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Abstract—Precision medicine brings the promise of more
precise diagnosis and individualized therapeutic strategies from
analyzing a cancer’s genomic signature. Technologies such as
high-throughput sequencing enable cheaper data collection at
higher speed, but rely on modern data analysis platforms
to extract knowledge from these high dimensional datasets.
Since this is a rapidly advancing field, new diagnoses and
therapies often require tailoring of the analysis. These pipelines
are therefore developed iteratively, continuously modifying
analysis parameters before arriving at the final results. To
enable reproducible results it is important to record all these
modifications and decisions made during the analysis process.

We built a system, walrus, to support reproducible analyses
for iteratively developed analysis pipelines. The approach is
based on our experiences developing and using deep analysis
pipelines to provide insights and recommendations for treat-
ment in an actual breast cancer case. We designed walrus
for the single servers or small compute clusters typically
available for novel treatments in the clinical setting. walrus
leverages software containers to provide reproducible execution
environments, and integrates with modern version control
systems to capture provenance of data and pipeline parameters.

We have used walrus to analyze a patient’s primary tumor
and adjacent normal tissue, including subsequent metastatic
lesions. Although we have used walrus for specialized analyses
of whole-exome sequencing datasets, it is a general data analysis
tool that can be applied in a variety of scientific disciplines.

I. INTRODUCTION

Precision medicine uses patient-specific molecular infor-

mation to diagnose and categorize disease to tailor treatment

to improve health outcome.[1] Important goals in precision

medicine are to learn about the variability of the molecular

characteristics of individual tumors, their relationship to

outcome, and to improve diagnosis and therapy.[2] Inter-

national cancer institutions are therefore offering dedicated

personalized medicine programs.

For cancer, high throughput sequencing is an emerging

technology to facilitate personalized diagnosis and treatment

since it enables collecting high quality genomic data from

patients at a low cost. Data collection is becoming cheaper,

but the downstream computational analysis is still time

consuming and thereby a costly part of the experiment.

This is because of the manual efforts to set up, analyze,

and maintain the analysis pipelines. These pipelines consist

Bjørn Fjukstad is now at DIPS AS.

of a large number of steps that transform raw data into

interpretable results.[3] These pipelines often consists of in-

house or third party tools and scripts that each transform

input files and produce some output. Although different

tools exist, it is necessary to carefully explore different tools

and parameters to choose the most efficient to apply for

a dedicated question.[4] The complexity of the tools vary

from toolkits such as the Genome Analysis Toolkit (GATK)

to small custom bash or R scripts. In addition some tools

interface with databases whose versions and content will

impact the overall result.[5]

Improperly developed analysis pipelines for precision

medicine may generate inaccurate results, which may have

negative consequences for patient care.[6] When developing

analysis pipelines for use in precision medicine it is there-

fore necessary to track pipeline tool versions, their input

parameters, and data. Both to thoroughly document what

produced the final clinical reports, but also for iteratively

improving the quality of the pipeline during development.

Because of the iterative process of developing the analysis

pipeline, it is necessary to use analysis tools that facilitate

modifying pipeline steps and adding new ones with little

developer effort.

A. Breast Cancer Diagnosis and Treatment

We have previously analyzed DNA sequence data from a

breast cancer patient’s primary tumor and adjacent normal

cells to identify the molecular signature of the patient’s

tumor and germline. When the patient later relapsed we

analyzed sequence data from the patient’s metastasis to

provide an extensive comparison against the primary and

to identify the molecular drivers of the patient’s tumor.

We used Whole-Genome Sequencing (WGS) to sequence

the primary tumor and adjacent normal cells at an aver-

age depth of 20, and Whole-Exome Sequencing (WES)

at an average depth of 300. The biological samples were

sequenced at the Genome Quebec Innovation Centre and

we stored the raw datasets on our in-house server. From

the analysis pipelines we generated reports with end results,

such as detected somatic mutations, that was distributed to

both the patient and the treating oncologists. These could

be used to guide diagnosis and treatment, and give more

detailed insight into both the primary and metastasis. When
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the patient relapsed we analyzed WES data using our own

pipeline manager, walrus, to investigate the metastasis and

compare it to the primary tumor.

For the initial WGS analysis we developed a pipeline to

investigate somatic and germline mutations based on Broad

Institute’s best practices. We developed the analysis pipeline

on our in-house compute server using a bash script version

controlled with git to track changes as we developed the

analysis pipeline. The pipeline consisted of tools including

picard,1 fastqc,2 trimmomatic,3 and the GATK.4 While the

analysis tools themselves provide the necessary functionality

to give insights in the disease, ensuring that the analyses

could be fully reproduced later left areas in need of im-

provement.

We chose a command-line script over more complex

pipeline tools or workbenches such as Galaxy[7] because of

its fast setup time on our available compute infrastructure,

and familiar interface. More complex systems could be

beneficial in larger research groups with more resources to

compute infrastructure maintenance, whereas command-line

scripting languages require little infrastructure maintenance

over normal use. In addition, while there are off-site solu-

tions for executing scientific workflows, analyzing sensitive

data often put hard restrictions on where the data can be

stored and analyzed.

After we completed the first round of analyses we sum-

marized our efforts and noted some lessons learned.

• Datasets and databases should be version controlled

and stored along with the pipeline description. In the

analysis script we referenced to datasets and databases

by their physical location on a storage system, but

these were later moved without updating the pipeline

description causing extra work. A solution would be

to add the data to the same version control repository

hosting the pipeline description.

• The specific pipeline tools should also be kept available

for later use. Since installing many bioinformatics tools

require a long list of dependencies, it is beneficial

to store the pipeline tools to reduce the time to start

analyzing new data or re-run analyses.

• It should be easy to add new tools to an existing

pipeline and execution environment. This includes in-

stalling the specific tool and adding to an existing

pipeline. Bundling tools within software containers,

such as Docker, and hosting them on an online registry

simplifies the tool installation process since the only

requirement is the container runtime.

• While bash scripts have their limitations, using a

well-known format that closely resembles the normal

1broadinstitute.github.io/picard
2bioinformatics.babraham.ac.uk/projects/fastqc
3usadellab.org/cms/?page=trimmomatic
4software.broadinstitute.com/gatk

command-line use clearly have its advantages. It is

easy to understand what tools were used, their input

parameters, and the data flow. However, from our

experience when these analysis scripts grow too large

they become too complex to modify and maintain.

• While there are new and promising state-of-the art

pipeline managers, many of these also require state-

of-the-art computing infrastructure to run. This may

not be the case for the current research and hospital

environments.

The above problem areas are not just applicable to our

research group, but common to other research and precision

medicine projects as well. Especially when hospitals and

research groups aim to apply personalized medicine efforts

to guide therapeutic strategies and diagnosis, the analyses

will have to be able to be easily reproducible later. We used

the lessons learned to design and implement walrus, a

command line tool for developing and running data analysis

pipelines. It automatically orchestrates the execution of dif-

ferent tools, and tracks tool versions and parameters, as well

as datasets through the analysis pipeline. It provides users

a simple interface to inspect differences in pipeline runs,

and retrieve previous analysis results and configurations.

In the remainder of the paper we describe the design and

implementation of walrus, its clinical use, its performance,

and how it relates to other pipeline managers.

II. WALRUS

walrus is a tool for developing and executing data

analysis pipelines. It stores information about tool versions,

tool parameters, input data, intermediate data, output data,

as well as execution environments to simplify the process of

reproducing data analyses. Users write descriptions of their

analysis pipelines using a familiar syntax and walrus uses

this description to orchestrate the execution of the pipeline.

In walrus we package all tools in software containers to

capture the details of the different execution environments.

While we have used walrus to analyse high-throughput

datasets in precision medicine, it is a general tool that can

analyze any type of data, e.g. image datasets for machine

learning. It has few dependencies and runs on on any plat-

form that supports Docker containers. While other popular

pipeline managers require the use of cluster computers or

cloud environment, we focus on single compute nodes often

found in clinical environments such as hospitals.

walrus is implemented as a command-line tool in the

Go programming language. We use the popular software

container implementation Docker5 to provide reproducible

execution environments, and interface with git together with

git-lfs6 to version control datasets and pipeline descriptions.

By choosing Docker and git we have built a tool that easily

5docker.com
6git-lfs.github.com
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integrates with current bioinformatic tools and workflows.

It runs both natively or within its own Docker container to

simplify its installation process.

With walrus we target pipeline developers that use

command-line tools and scripting languages to build and run

analysis pipelines. Users can use existing Docker containers

from sources such as BioContainers,7 or build containers

with their own tools. We integrate with the current workflow

using git to version control analysis scripts, and use git-lfs

for versioning of datasets as well. The pipeline description

format in walrus resembles standard command line syn-

tax. In addition, walrus automatically track and version

input, intermediate, and output files without users having to

explicitly declare these in the description.

A. Pipeline Configuration

Users configure analysis pipelines by writing pipeline de-

scription files in a human readable format such as JavaScript

Object Notation (JSON) or YAML Ain’t Markup Language

(YAML). A pipeline description contains a list of stages,

each with inputs and outputs, along with optional informa-

tion such as comments or configuration parameters such as

caching rules for intermediate results. Listing 1 shows an

example pipeline stage that uses MuTect[8] to detect somatic

point mutations. Users can also specify the tool versions by

selecting a specific Docker image, for example using MuTect

version 1.1.7 as in Listing 1, line 3.

Users specify the flow of data in the pipeline within the

pipeline description, as well as the dependencies between the

steps. Since pipeline configurations can become complex,

users can view their pipelines using an interactive web-based

tool, or export their pipeline as a DOT file for visualization

in tools such as Graphviz.8

Listing 1. Example pipeline stage for a tool that detects somatic point
mutations. It reads a reference sequence file together with both tumor and
normal sequences, and produces an output file with the detected mutations.
{

"Name": "mutect",
"Image": "fjukstad/mutect:1.1.7",
"Cmd": [

"--analysis_type","MuTect",
"--reference_sequence","/walrus/input/reference.fasta",
"--input_file:normal","/walrus/input/normal.bam",
"--input_file:tumor","/walrus/input/tumor.bam",
"-L","/walrus/input/targets.bed",
"--out","/walrus/mutect/mutect-stats-txt",
"--vcf","/walrus/mutect/mutect.vcf"

],
"Inputs":[

"input"
]

}

Users add data to an analysis pipeline by specifying the

location of the input data in the pipeline description, and

walrus automatically mounts it to the container running

the analysis. The location of the input files can either be local

7biocontainers.pro
8graphviz.org

or remote locations such as an FTP server. When the pipeline

is completed, walrus will store all the input, intermediate

and output data to a user-specified location.

B. Pipeline Execution

When users have written a pipeline description for

their analyses, they can use the command-line interface of

walrus to run the analysis pipeline. walrus builds an

execution plan from the pipeline description and runs it for

the user. It uses the input and output fields of each pipeline

stage to construct a Directed Acyclic Graph (DAG) where

each node is a pipeline stage and the links are input/output

data to the stages. From this graph walrus can determine

parallel stages and coordinate the execution of the pipeline.

In walrus, each pipeline stage is run in a separate

container, and users can specify container versions in the

pipeline description to specify the correct version of a tool.

We treat a container as a single executable and users specify

tool input arguments in the pipeline description file using

standard command line syntax. walrus will automatically

build or download the container images with the analysis

tools, and start these with the user-defined input parameters

and mount the appropriate input datasets. While the pipeline

is running, walrus monitors running stages and schedules

the execution of subsequent pipeline stages when their

respective input data become available. We have designed

walrus to execute an analysis pipeline on a single large

server, but since the tools are run within containers, these

can easily be orchestrated across a range of servers in future

versions.

Users can select from containers pre-installed with bioin-

formatics tools, or build their own using a standard Docker-

file. Through software containers walrus can provide a

reproducible execution environment for the pipeline, and

containers provide simple execution on a wide range of

software and hardware platforms. With initiatives such as

BioContainers, researchers can make use of already existing

containers without having to re-write their own. Data in each

pipeline step is automatically mounted and made available

within each Docker container. By simply relying on Docker

walrus requires little software setup to run different bioin-

formatics tools.

While walrus executes a single pipeline on one physical

server, it supports both data and tool parallelism, as well as

any parallelization strategies within each tool, e.g. multi-

threading. To enable data and tool parallelism, e.g. run the

same analyses to analyse a set of samples, users list the

samples in the pipeline description and walrus will auto-

matically run each sample through the pipeline in parallel.

While we can parallelize the independent pipeline steps, the

performance of an analysis pipeline relies on each of the

independent tools and available compute power. Techniques

such as multithreading can improve the performance of a
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tool, and walrus users can make use of these techniques if

their are available through the tools command line interface.

Upon successful completion of a pipeline run, walrus
will write a verbose pipeline description file to the output

directory. This file contains information on the runtime of

each step, which steps were parallelized, and provenance

related information to the output data from each step. Users

can investigate this file to get a more detailed look on the

completed pipeline. In addition to this output file walrus
will return a unique version ID for the pipeline run, which

later can be used to investigate a previous pipeline run.

C. Data Management

In walrus we provide an interface for users to track

their analysis data through a version control system. This

allows users to inspect data from previous pipeline runs

without having to recompute all the data. walrus stores all

intermediate and output data in an output directory specified

by the user, which is version controlled automatically by

walrus when new data is produced by the pipeline. We

track changes at file granularity.

In walrus we interface with git to track any output file

from the analysis pipeline. When users execute a pipeline,

walrus will automatically add and commit output data

to a git repository using git-lfs. Users typically use

a single repository per pipeline, but can share the same

repository to version multiple pipelines as well. Instead

of writing large blobs to a repository, git-lfs writes small

pointer files with the hash of the original file, the size of

the file, and the version of git-lfs used. The files themselves

are stored separately which makes the size of the repository

small and manageable with git. The main reason why we

chose git and git-lfs for version control is that git is the de

facto standard for versioning source code, and we want to

include versioning of datasets without altering the typical

development workflow.

Since we are working with potentially sensitive datasets

walrus is targeted at users that use a local compute and

storage servers. It is up to users to configure a remote

tracker for their repositories, but we provide command-line

functionality in walrus to run a git-lfs server that can store

users’ contents. They can use their default remotes, such as

Github, for hosting source code but they must themselves

provide the remote server to host their data.

D. Pipeline Reconfiguration and Re-execution

Reconfiguring a pipeline is common practice in precision

medicine, e.g. to ensure that genomic variants are called

with a desired sensitivity and specificity. To reconfigure an

existing pipeline users make the applicable changes to the

pipeline description and re-run it using walrus. walrus
will then recompute the necessary steps and return a version

ID for the newly run pipeline. This ID can be used to

compare pipeline runs, the changes made, and optionally

Figure 1. Screenshot of the web-based visualization in walrus. The user
has zoomed in to inspect the pipeline step which marks duplicate reads in
the tumor sequence data.

restore the data and configuration from a previous run.

Reconfiguring the pipeline to use updated tools or reference

genomes will alter the pipeline configuration and force

walrus to recompute the applicable pipeline stages.

The command-line interface of walrus provides func-

tionality to restore results from a previous run, as well as

printing information about a completed pipeline. To restore

a previous pipeline run, users use the restore command

line flag in walrus together with the version ID of the

respective pipeline run. walrus will interface with git to

restore the files to their state at the necessary point in time.

III. RESULTS

To evaluate the usefulness of walrus we demonstrate its

use in a clinical setting, and the low computational time and

storage overhead to support reproducible analyses.

A. Clinical Application

We have used walrus to analyze a whole-exome data

from a sample in the McGill Genome Quebec [MGGQ]

dataset (GSE58644)[9] to discover Single Nucleotide Poly-

morphisms (SNPs), genomic variants and somatic muta-

tions. We interactively developed a pipeline description

that follows the best-practices of The Broad Institute9 and

generated reports that summarized the findings to share the

results. Figure 1 shows a screenshot from the web-based

visualization in walrus of the pipeline.

From the analyses we discovered inherited germline mu-

tations that are recognized to be among the top 50 mutations

associated with an increased risk of familial breast cancer.

We also discovered a germline deletion which has been

associated with an increased risk of breast cancer. We also

discovered mutations in a specific gene that might explain

why specific drug had not been effective in the treatment of

the primary tumor. From the profile of the primary tumor we

discovered many somatic events (around 30 000) across the

9software.broadinstitute.org/gatk/best-practices
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whole genome with about 1000 in coding regions, and 500

of these were coding for non-synonymous mutations. We

did not see amplification or constituent activation of growth

factors like HER2, EGFR or other players in breast cancer.

Because of the germline mutation, early recurrence, and lack

of DNA events, we suspect that the patient’s primary tumor

was highly immunogenic. We have also identified several

mutations and copy number changes in key driver genes.

This includes a mutation in a gene that creates a premature

stop codon, truncating one copy of the gene.

While we cannot share the results in details or the

sensitive dataset, we have made the pipeline description

available at github.com/uit-bdps/walrus along with other

example pipelines.

B. Example Dataset

To demonstrate the performance of walrus and the

ability to track and detect changes in an analysis pipeline,

we have implemented one of the variant calling pipelines

from [10] using tools from Picard and the GATK. We show

the storage and computational overhead of our approach,

and the benefit of capturing the pipeline specification using

a pipeline manager rather than a methods section in a paper.

The pipeline description and code is available along with

walrus at github.com/uit-bdps/walrus.

1) Performance and Resource Usage: We first run the

variant calling pipeline without any additional provenance

tracking or storing of output or intermediate datasets. This

is to get a baseline performance measurement for how

long we expect the pipeline to run. We then run a second

experiment to measure the overhead of versioning output and

intermediate data. Then we introduce a parameter change

in one of the pipeline steps which results in new inter-

mediate and output datasets. Specifically we change the

--maxReadsForRealignment parameter in the indel

realigner step back to its default (See the online pipeline

description for more details). This forces walrus to recom-

pute the indel realigner step and any subsequent steps. We

then use the restore flag in walrus to illustrate what the

parameter change had on the pipeline output. To illustrate

how walrus can restore old pipeline configurations and

results, we restore the pipeline to the initial configuration and

results. We show the computational overhead and storage

usage of restoring a previous pipeline configuration.

Reproducing results from a scientific publication can be

a difficult task. For example, troublesome formatting of the

online version of [10] led to some pipeline tools failing.

The parameters prefixed with two consecutive hyphens (--)

are converted to single em dashes (—). PDF versions of

the paper lists the parameters correctly. In addition, the

input filenames in the variant calling step do not correspond

to any output files in previous steps, but because of their

similarity to previous output files we assume that this is just

a typo. These issues in addition to missing commands for

e.g. the filtering step highlights the clear benefit of writing

and reporting the analysis pipeline using a tool such as

walrus.

Table I shows the runtime and storage use of the different

experiments. In the second experiment we can see the added

overhead of adding version control to the dataset. In total,

an hour is added to the runtime and the data size is doubled.

The doubling comes from git-lfs hard copying the data into

a subdirectory of the .git folder in the repository. With git-

lfs users can move all datasets to a remote server reducing

the local storage requirements. In the third experiment we

can see that only the downstream analyses from configuring

the indel realignment parameter is executed. It generates

30GB of additional data, but the execution time is limited

to the applicable stages. Restoring the pipeline to a pre-

vious configuration is almost instantaneous since the data

is already available locally and git only has to modify the

pointers to the correct files in the .git subdirectory.

Table I
RUNTIME AND STORAGE USAGE FOR A VARIANT-CALLING PIPELINE

DEVELOPED WITH WALRUS .

Experiment Task Runtime Storage
1 Run pipeline with de-

fault configuration
21 hours 50 min-
utes

235 GB

2 Run the default
pipeline with version
control of data

23 hours 9 min-
utes

470 GB

3 Re-run the pipeline
with modified indel
realignment parame-
ter

13 hours 500 GB

4 Restoring pipeline
back to the default
configuration

< 1 second 500GB

IV. RELATED WORK

There are a wealth of pipeline specification formats and

workflow managers available. Some are targeted at users

with programming experience while others provide simple

Graphical User Interfaces (GUIs).

We have previously conducted a survey of different spe-

cialized bioinformatics pipelines.[11] The pipelines were

selected to show how analysis pipelines for different appli-

cations use different technologies for configuring, executing

and storing intermediate and output data. In the review, we

targeted specialized analysis pipelines that support scaling

out the pipelines to run on High-Performance Computing

(HPC) or cloud computing platforms.

Here we describe general systems for developing data

analysis pipelines, not just specialized bioinformatics

pipelines. While most provide viable options for genomic

analyses, we have found many of these pipeline systems

require complex compute infrastructure beyond the smaller

clinical research institutions. We discuss tools that use the
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common Common Workflow Language (CWL) pipeline

specification and systems that provide versioning of data.
CWL is a specification for describing analysis workflows

and tools.[12] A pipeline is written as a JSON or YAML

file, or a mix of the two, and describes each step in detail,

e.g. what tool to run, its input parameters, input data and

output data. The pipeline descriptions are text files that

can be under version control and shared between projects.

There are multiple implementations of CWL workflow plat-

forms, e.g. the reference implementation cwl runner[12],

Arvados[13], Rabix[14], Toil[15], Galaxy[7], and AWE.[16]

It is no requirement to run tools within containers, but

implementations can support it. There are few of these

tools that support versioning of the data. Galaxy is an open

web-based platform for reproducible analysis of large high-

throughput datasets.[7] It is possible to run Galaxy on local

compute clusters, in the cloud, or using the online Galaxy

site.10 In Galaxy users set up an analysis pipeline using

a web-based graphical interface, and it is also possible to

export or import an existing workflow to an Extensible

Markup Language (XML) file.11 We chose not to use Galaxy

because of missing command-line and scripting support,

along with little support for running workflows with different

configurations.[17] Rabix provides checksums of output data

to verify it against the actual output from the pipeline. This

is similar to the checksums found in the git-lfs pointer

files, but they do not store the original files for later. An

interesting project that uses CWL in production is The

Cancer Genomics Cloud[18]. They currently support CWL

version 1.0 and are planning on integrating Rabix as its CWL

executor. Arvados stores the data in a distributed storage

system, Keep, that provides both storage and versioning of

data. We chose not to use CWL and its implementations

because of its relaxed restrictions on having to use con-

tainers, its verbose pipeline descriptions, and the complex

compute architecture required for some implementations. We

are however experimenting with an extension to walrus
that translates pipeline descriptions written in walrus to

CWL pipeline descriptions.
Pachyderm is a system for running big data analysis

pipelines. It provides complete version control for data and

leverages the container ecosystem to provide reproducible

data processing.12 Pachyderm consists of a file system

(Pachyderm File System (PFS)) and a processing system

(Pachyderm Processing System (PPS)). PFS is a file sys-

tem with git-like semantics for storing data used in data

analysis pipelines. Pachyderm ensures complete analysis

reproducibility by providing version control for datasets in

addition to the containerized execution environments. Both

PFS and PPS is implemented on top of Kubernetes.13 There

10Available at usegalaxy.org.
11An alpha version of Galaxy with CWL support is now available
12pachyderm.io
13kubernetes.io

are now recent efforts to develop bioinformatics workflows

with Pachyderm that show great promise. In [19], the authors

show the potential performance improvements of single

workflow steps, not the full pipeline, when executing a

pipeline in Pachyderm. They unfortunately do not show the

time to import data into PFS, run the full pipeline, and op-

tionally investigate different versions of the intermediate, or

output datasets. We believe that the approach in Pachyderm

with version controlling datasets and containerizing each

pipeline step is, along with walrus, the correct approach to

truly reproducible data analysis pipelines. The reason we

did not use Kubernetes and Pachyderm was because our

compute infrastructure did not support it. In addition, we did

not want to use a separate tool, PFS, for data versioning, we

wanted to integrate it with our current practice of using git

for versioning.

Snakemake is a long-running project for analyzing bioin-

formatic datasets.[20] It uses a Python-based language to

describe pipelines, similar to the familiar Makefile syntax,

and can execute these pipelines on local machines, compute

clusters or in the cloud. To ensure reproducible workflows,

Snakemake integrates with Bioconda to provide the correct

versions of the different tools used in the workflows. It

integrates with Docker and Singularity containers[21] to

provide isolated execution, and in later versions Snake-

make allows pipeline execution on a Kubernetes cluster.

Because Snakemake did not provide necessary integration

with software containers at the time we developing our

analysis pipeline, we did not find it to be a viable alternative.

For example, support for pipelines consisting of Docker

containers pre-installed with bioinformatics tools came a

year later than walrus.

Another alternative to develop analysis pipelines is

Nextflow.[22] Nextflow uses its own language to describe

analysis pipelines and supports execution within Docker and

Singularity containers.

As discussed in [23], [11], recent projects propose to

use containers for life science research. The BioContain-

ers and Bioboxes[24] projects address the challenge of

installing bioinformatics data analysis tools by maintaining

a repository of Docker containers for commonly used data

analysis tools. Docker containers are shown to have better

than, or equal performance as Virtual Machines (VMs), and

introduce negligible overhead opposed to executing on bare

metal.[25] While Docker containers require a bootstrapping

phase before executing any code, this phase is negligible in

the compute-intensive precision medicine pipelines that run

for several hours. Containers have also been proposed as a

solution to improve experiment reproducibility, by ensuring

that the data analysis tools are installed with the same

responsibilities.[26]
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V. DISCUSSION

walrus is a general tool for analyzing any type of

dataset from different scientific disciplines, not just genomic

datasets in bioinformatics. Users specify a workflow using

either a YAML or JSON format, and each step in the

workflow is run within a Docker container. walrus tracks

input, intermediate, and output datasets with git to ensure

transparency and reproducibility of the analyses. Through

these features walrus helps to ensure repeatability of the

computation analyses of a research project.

Precision medicine requires flexible analysis pipelines that

allow researchers to explore different tools and parameters to

analyze their data. While there are best practices to develop

analysis pipelines for genomic datasets, e.g. to discover

genomic variants, there is still no de-facto standard for

sharing the detailed descriptions to simplify re-using and

reproducing existing work. With walrus we provide one

alternative to develop and share pipeline descriptions.

Pipelines typically need to be tailored to fit each project

and patient, and different patients will typically elicit differ-

ent molecular patterns that require individual investigation.

In our WES analysis pipeline we followed the best practices,

and explored different combinations of tools and parameters

before we arrived at the final analysis pipeline. For example,

we ran several rounds of preprocessing (trimming reads and

quality control) before we were sure that the data was ready

for analysis. walrus allowed us to keep track of different

intermediate datasets, along with the pipeline specification,

simplifies the task of comparing the results from pipeline

tools and input parameters.

walrus is a very simple tool to set up and start using.

Since we only target users with single large compute nodes,

walrus can run within a Docker container making Docker

its only dependency. Systems such as Nextflow, Galaxy or

Pachyderm all require users to set up and manage complex

compute infrastructures. The simplicity of walrus enables

repeatable computational analyses without any of these

obstacles, and is one of the strengths of our tool.

Unlike other proposed solutions for executing data analy-

sis pipelines, walrus is the only system we have discovered

that explicitly uses git, and git-lfs, to store output datasets.

Other systems either use a specialized storage system, or

ignore data versioning at all. We believe that using a

system that bioinformaticians already use for source control

management is the simplest way to allow users version their

data along-side their analysis code. The alternative of using

a new data storage platform that provides data versioning

requires extra time and effort for researchers both to learn

and integrate in their current workflow.

We have seen that there are other systems to develop,

share, and run analysis pipelines in both bioinformatics and

other disciplines. Like walrus, many of these use textual

representations in JSON or other languages to describe the

analysis pipeline, and Docker to provide reproducible and

isolated execution environments. In warlus we provide

pipeline descriptions that allows users to reuse the familiar

command-line syntax. The only new additional information

they have to add is the dependencies between tasks. Systems

such as CWL requires that users also describe the input and

output data verbosely. We believe that the tool, walrus,

can detect these, and will handle this for the user. This will

in turn make the pipeline descriptions of walrus shorter

in terms of lines of code.

While systems such as Galaxy provide a graphical user

interface, walrus requires that its users know how to

navigate the command line and use systems such as git and

Docker, to analyze a dataset. For some users this may an

obstacle, but we believe that it provides a more hands-on

and transparent view of the whole data analysis process.

While we provide one approach to version control

datasets, there are still some drawbacks. git-lfs supports

large files, but in our results it added 5% in runtime. This

makes the entire analysis pipeline slower, but we argue that

having the files under version control outweigh the runtime.

In addition, there are only a few public gif-lfs hosting

platforms for datasets larger than a few gigabytes, making it

necessary to host these in-house. In-house hosting may also

be a requirement at different medical institutions.

We aim to investigate the performance of running analysis

pipelines with walrus, and the potential benefit of its

built-in data parallelism. While our WES analysis pipeline

successfully run steps in parallel for the tumor and adjacent

normal tissue, we have not demonstrated the benefit of doing

so. This includes benchmarking and analyzing the system

requirements for doing precision medicine analyses. We are

also planning on exploring parallelism strategies where we

can split an input dataset into chromosomes and run some

steps in parallel for each chromosome, before merging the

data again.

We believe that future data analysis systems for precision

medicine will follow the lines of our proposed approach.

Software container solutions provide valuable information

in the reporting of the analyses, and they impose little

performance overhead. Further, the development of container

orchestration systems such as Kubernetes is getting wide

adoption nowadays, especially in web-scale internet compa-

nies. However, the adoption of such systems in a clinical

setting depend on support from more tools, and also the

addition of new compute infrastructure.

VI. CONCLUSION

We have designed and implemented walrus, a tool for

developing reproducible data analysis pipelines for use in

precision medicine. Precision medicine requires that analy-

ses are run on hospital compute infrastructures and results

are fully reproducible. By packaging analysis tools in soft-

ware containers, and tracking both intermediate and output
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data, walrus provides the foundation for reproducible data

analyses in the clinical setting. We have used walrus to

analyze a patient’s metastatic lesions and adjacent normal

tissue to provide insights and recommendations for cancer

treatment.
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[4] N. Servant, J. Roméjon, P. Gestraud, P. La Rosa, G. Lucotte,
S. Lair, V. Bernard, B. Zeitouni, F. Coffin, G. Jules-Clément
et al., “Bioinformatics for precision medicine in oncology:
principles and application to the shiva clinical trial,” Frontiers
in genetics, vol. 5, 2014.

[5] A. Sboner and O. Elemento, “A primer on precision medicine
informatics,” Briefings in bioinformatics, vol. 17, no. 1, pp.
145–153, 2015.

[6] S. Roy, C. Coldren, A. Karunamurthy, N. S. Kip, E. W. Klee,
S. E. Lincoln, A. Leon, M. Pullambhatla, R. L. Temple-
Smolkin, K. V. Voelkerding et al., “Standards and guide-
lines for validating next-generation sequencing bioinformatics
pipelines: A joint recommendation of the association for
molecular pathology and the college of american patholo-
gists,” The Journal of Molecular Diagnostics, 2017.

[7] J. Goecks, A. Nekrutenko, and J. Taylor, “Galaxy: a com-
prehensive approach for supporting accessible, reproducible,
and transparent computational research in the life sciences,”
Genome biology, vol. 11, no. 8, p. R86, 2010.

[8] K. Cibulskis, M. S. Lawrence, S. L. Carter, A. Sivachenko,
D. Jaffe, C. Sougnez, S. Gabriel, M. Meyerson, E. S. Lander,
and G. Getz, “Sensitive detection of somatic point muta-
tions in impure and heterogeneous cancer samples,” Nature
biotechnology, vol. 31, no. 3, pp. 213–219, 2013.

[9] A. Tofigh, M. Suderman, E. R. Paquet, J. Livingstone,
N. Bertos, S. M. Saleh, H. Zhao, M. Souleimanova, S. Cory,
R. Lesurf et al., “The prognostic ease and difficulty of
invasive breast carcinoma,” Cell reports, vol. 9, no. 1, pp.
129–142, 2014.

[10] A. Cornish and C. Guda, “A comparison of variant calling
pipelines using genome in a bottle as a reference,” BioMed
research international, vol. 2015, 2015.

[11] B. Fjukstad and L. A. Bongo, “A review of scalable bioin-
formatics pipelines,” Data Science and Engineering, vol. 2,
no. 3, pp. 245–251, 2017.

[12] P. Amstutz, M. R. Crusoe, N. Tijanić, B. Chapman,
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