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Abstract Candida albicans, an opportunistic human pathogen, poses a significant threat to 
human health and is associated with significant socio- economic burden. Current antifungal treat-
ments fail, at least in part, because C. albicans can initiate a strong drug tolerance response that 
allows some cells to grow at drug concentrations above their minimal inhibitory concentration. 
To better characterize this cytoprotective tolerance program at the molecular single- cell level, we 
used a nanoliter droplet- based transcriptomics platform to profile thousands of individual fungal 
cells and establish their subpopulation characteristics in the absence and presence of antifungal 
drugs. Profiles of untreated cells exhibit heterogeneous expression that correlates with cell cycle 
stage with distinct metabolic and stress responses. At 2 days post- fluconazole exposure (a time 
when tolerance is measurable), surviving cells bifurcate into two major subpopulations: one char-
acterized by the upregulation of genes encoding ribosomal proteins, rRNA processing machinery, 
and mitochondrial cellular respiration capacity, termed the Ribo- dominant (Rd) state; and the other 
enriched for genes encoding stress responses and related processes, termed the Stress- dominant 
(Sd) state. This bifurcation persists at 3 and 6 days post- treatment. We provide evidence that the 
ribosome assembly stress response (RASTR) is activated in these subpopulations and may facilitate 
cell survival.
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The valuable study by Dumeaux et al. examines the transcriptional response to antifungal treat-
ment in the major opportunistic human fungal pathogen Candida albicans. Using solid method-
ology, including a novel droplet- based single cell transcriptomics platform, the authors report that 
fungal cells exhibit heterogeneity in their transcriptional response to antifungal drug treatment. 
The ability to study the trajectories of individual cells in a high- throughput manner provides 
a novel perspective on studying the emergence of drug tolerance and resistance in fungal 
pathogens.
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Introduction
Candida albicans is one of the most prevalent human fungal pathogens (Benedict et al., 2019; Kull-
berg and Arendrup, 2015; Pappas et al., 2018). Systemic C. albicans infections are the second most 
common cause of mortality from infectious diseases in extremely premature infants (15–20% mortality), 
and the fourth most common cause of nosocomial bloodstream infections (30–50% mortality) (Benjamin 
et al., 2010; Brown and Netea, 2012; Pfaller et al., 2019). The frequency of drug resistance is far 
lower than the frequency of treatment failures, such that most infections that fail to respond to anti-
fungal drug treatments are susceptible to the drug. This clinical persistence can result from heteroge-
neity in antifungal drug responses, variations in host immune status, and the inability of drugs to reach 
their fungal target sites (Delarze and Sanglard, 2015; Wuyts et al., 2018).

A resistant fungal isolate can thrive in the presence of an antifungal drug at concentrations 
exceeding the minimum inhibitory concentration (MIC) of that species, with detectable growth within 
24 hr of drug exposure. For a tolerant fungal isolate, a proportion of cells (typically 5–95% of the popu-
lation) can grow, albeit slowly, at concentrations surpassing the population average MIC (Berman and 
Krysan, 2020); tolerance is detectable only 48 hr after drug exposure, which is longer than most clin-
ical assays are performed (Espinel- Ingroff et al., 2017). Approaches for predicting patient response 
to an infection, based solely on the average response of cells to a drug challenge across a population 
after 24 hr, can overlook such subpopulations with behaviors that have the potential to significantly 
impact the evolution of drug resistance (Altschuler and Wu, 2010).

Resistance usually results from mutations that directly influence interaction of the drug with its 
target (Berman and Krysan, 2020), while tolerance is thought to stem from phenotypic heteroge-
neity or cell- to- cell variations in phenotypic responses within an isogenic cell population. Microbial 
phenotypic heterogeneity can arise from mechanisms including stochastic or periodic gene expres-
sion, protein stability, cell age, cell- cell interactions, chromatin modifications, and genomic neoplasti-
city (Ackermann, 2015). Heterogeneity in microbial populations can confer benefits like bet- hedging, 
rapid metabolic shifts, division of labor, and resource sharing (Ackermann, 2015). It is important 
to note the distinction between antibacterial and antifungal drug tolerance. For bacteria, toler-
ance is defined by the duration of cell survival following periodic exposure to a bactericidal drug 
(Brauner et al., 2016). By contrast, for fungi, tolerance is characterized by the proportion of growth 

eLife digest Many drugs currently used to treat fungal diseases are becoming less effective. This 
is partly due to the rise of antifungal resistance, where certain fungal cells acquire mutations that 
enable them to thrive and proliferate despite the medication. Antifungal tolerance also contributes 
to this problem, wherein certain cells can continue to grow and multiply, while other – genetically 
identical ones – cannot. This variability is partly due to differences in gene expression within the cells. 
The specific nature of these differences has remained elusive, mainly because their study requires the 
use of expensive and challenging single- cell technologies.

To address this challenge, Dumeaux et al. adapted an existing technique to perform single- cell 
transcriptomics in the pathogenic yeast Candida albicans. Their approach was cost effective and 
made it possible to examine the gene expression in thousands of individual cells within a population 
that had either been treated with antifungal drugs or were left untreated.

After two to three days following exposure to the antifungal treatment, C. albicans cells commonly 
exhibited one of two states: one subgroup, the ‘Ribo- dominant’ cells, predominantly expressed genes 
for ribosomal proteins, while the other group, the ‘Stress- dominant’ cells, upregulated their expres-
sion of stress- response genes. This suggests that drug tolerance may be related to different gene 
expression patterns in growing cell subpopulations compared with non- growing subpopulations.

The findings also indicate that the so- called ‘ribosome assembly stress response’ known to help 
baker’s yeast cells to survive, might also aid C. albicans in surviving exposure to antifungal treatments.

The innovative use of single- cell transcriptomics in this study could be applied to other species 
of fungi to study differences in cell communication under diverse growth conditions. Moreover, the 
unique gene expression patterns in C. albicans identified by Dumeaux et al. may help to design new 
antifungal treatments that target pathways linked to drug resistance.

https://doi.org/10.7554/eLife.81406
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in supra- MIC drug concentrations relative to growth without the drug and is best characterized in C. 
albicans treated with fluconazole (FCZ). The underlying mechanisms and implications of antifungal 
drug tolerance differ from those of bacterial heteroresistance, in which a small subpopulation exhibits 
growth in bacteriocidal drugs (Andersson et al., 2019). In this study, the focus is on antifungal toler-
ance to FCZ, a well- known fungistatic drug.

Previous studies have characterized key aspects of drug tolerance in C. albicans. Tolerance is 
largely drug concentration- independent and high tolerance correlates with poor clinical outcomes 
(Astvad et al., 2018; Levinson et al., 2021; Rosenberg et al., 2018). Tolerance increases the effec-
tive population size (Cowen and Lindquist, 2005; Vincent et al., 2016). The emergence of higher 
tolerance cannot be attributed solely to the accumulation of adaptive point mutations (Wertheimer 
et al., 2016), as selected tolerant cells and their original parent give rise to mixed populations of 
tolerant and non- tolerant cells in similar proportions (Rosenberg et al., 2018). Adjuvant drugs used 
alongside the common fungistatic FCZ not only inhibit tolerance but prevent the evolution of resis-
tance because these drug combinations are fungicidal. Such adjuvant drugs can modulate the toler-
ance response by targeting Hsp90, calcineurin, TOR, PKC, and sphingolipid biosynthesis (Cowen and 
Lindquist, 2005; Karababa et al., 2006; Rosenberg et al., 2018; Sanglard et al., 2003; Vincent 
et al., 2016). The molecular mechanisms coordinating tolerance regulation across cellular pathways 
are not yet fully understood, although stress responses appear to be central (Cowen and Lindquist, 
2005; Rosenberg et al., 2018). Several cellular processes are essential for tolerance, including ergos-
terol biosynthesis and proteasome function (reviewed in Berman and Krysan, 2020).

Most previous studies of drug tolerance, ranging from classic growth assays to omics profiling, have 
treated surviving fungal subpopulations as a homogenous whole, mainly due to a lack of technology 
to efficiently study large numbers of individual fungal cells. While single- cell (sc) transcriptomic assays 
have been applied extensively to mammalian systems, their use in fungal contexts remains limited due 
to the challenges of disrupting the rigid cell wall, lysing the membrane, and the small overall amount 
of RNA per cell. In the model yeast Saccharomyces cerevisiae, several limited microfluidic or barcoding 
sc studies examined approximately a hundred cells (Gasch et al., 2017; Nadal- Ribelles et al., 2019b; 
Nadal- Ribelles et al., 2019a; Urbonaite et al., 2021), and two high- throughput fungal transcriptome 
studies profiled ~40K cells (Jackson et al., 2020; Jariani et al., 2020). In our preliminary pre- printed 
study (Bettauer et al., 2020), we profiled C. albicans using a fungal nanoliter droplet- based assay 
(DROP- seq), modified from the original system presented by Macosko et al., 2015. This approach 
overcomes technical challenges that arise in fungal settings, providing a flexible, cost- effective solu-
tion. Here, we extend the data and analysis from Bettauer et al. to better understand subpopulation- 
specific responses to drug stress. Since the original sc study (Bettauer et al., 2020), a second C. 
albicans sc study was performed to investigate the initial response (within 3 hr) to high FCZ concen-
trations (Dohn et al., 2022). Dohn and colleagues observed increased expression of ergosterol genes, 
an increase in cell cycle arrest genes, and a transient increase in stress response gene expression at 
1.5 hr. The work also identifies interesting variability in the temporal response to acute drug exposure 
but does not address molecular heterogeneity in the subsequent emergence from cell cycle arrest 
that can only be observed as tolerance after longer times (days 2–3), the focus of this study.

Here, we use the fungal DROP- seq system (Bettauer et al., 2020) to explore phenotypic hetero-
geneity in the C. albicans response to antifungal drugs. We profiled the transcriptomes of thousands 
of individual cells from C. albicans populations that were either untreated (UT) or exposed to anti-
fungal compounds with a focus on FCZ across several days. This data is integrated with bulk DNA 
sequencing and fluorescence microscopy to provide in- depth analyses that focus on subpopulation 
composition and phenotypic heterogeneity across isogenic cell populations. We detect a heteroge-
neous response to FCZ within isogenic populations, supporting the idea that different cells exhibit 
distinct survival strategies, including some with increased expression of genes related to drug toler-
ance. This study underscores molecular events that may lead to drug tolerance and that hold potential 
for future therapeutic targeting.

https://doi.org/10.7554/eLife.81406
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Results
C. albicans exhibits drug tolerance 2 days after exposure to FCZ
To uncover molecular events associated with the emergence of drug tolerance in C. albicans, we 
performed a series of disk diffusion assays, focusing on a 6- day time series with FCZ, detailed in 
Appendix 1. When assayed at 48 hr, both disk assays and broth microdilution assays report on toler-
ance (Rosenberg et al., 2018). Drug tolerance increased significantly between days 1 and 2 (p<0.001, 
Kruskal- Wallis χ2 test) and increased slightly at day 3, after which the tolerance level did not change. 
Thus, tolerant cells are present in all cultures starting at day 2. Since these populations originate from 
a single isogenic colony, we assume that tolerant and non- tolerant cells in the same culture differen-
tially express pathways and processes relevant to their ability to grow (or not grow) in the presence of 
the drug. We do not observe widespread drug resistance at any time point.

An optimized sc profiling assay to explore drug tolerance in C. albicans
Although sc profiling with a commercial system is feasible in S. cerevisiae (Jackson et  al., 2020), 
specific aspects of fungal biology motivated us to develop a low- cost alternative tailored for fungi, 
specifically C. albicans. We first optimized the removal of the cell wall, as well as the time and 
concentration parameters to fix the transcriptome (Materials and methods, ‘Strains, media, and drug 

Figure 1. Experimental design and initial single- cell profiling. (A) The time series experiment begins with three 
replicates of untreated (UT) cells followed by profiling of rapamycin (RAPA), caspofungin (CSP), and fluconazole 
(FCZ, 2 replicates at day 2, and 3 replicates at day 3). After 3 days in FCZ, cells were transferred to YPD; recovered 
cells were profiled at day 6 (i.e., 3 days after resuspension). (B) Bar plot (left) depicts the number of high- quality 
cells per sample. Violin plots (right) the distribution in the number of reads assigned to each cell.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Schema for analysis stragegy and measures of gene experssion.

Figure supplement 2. Comparison of single cell and bulk expression profiles.

https://doi.org/10.7554/eLife.81406
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treatment’, ‘Spheroplasts’). We then built a nanoliter droplet- based system modified from Macosko 
et al., 2015, using in- house components as described previously (Booeshaghi et al., 2019), to reduce 
the device and assay costs. The profiles reported here combine our preliminary effort (Bettauer et al., 
2020) with additional data and analyses to provide increased power to examine the technical and 
biological efficacy of our system.

C. albicans populations were grown in rich media alone (UT) or with an antifungal compound: 
FCZ (1 µg/ml), caspofungin (CSP; 1 ng/ml), or rapamycin (RAPA; 0.5 ng/ml) (Materials and methods, 
‘Strains, media, and drug treatment’). UT samples were collected during the logarithmic growth phase 
and treated samples were collected at days 2 and 3 post- drug exposure. This is the period when FCZ 
tolerance becomes evident. To explore whether subpopulations observed at days 2 and 3 persisted 
at later time points, we resuspended the FCZ day 3 population in fresh medium and profiled the 
samples on day 6 after 3 days of growth without drug (Figure 1A). The vast majority of cells were in 
the yeast white morphology with less than 0.2% of cells exhibiting a filamentous morphology (hyphae 
or pseudohyphae).

After processing with the DROP- seq device, samples were sequenced following the original 
protocol (Macosko et  al., 2015) but with cell concentration and PCR cycle numbers optimized 
for C. albicans (Materials and methods, ‘Cell preparation for sc profiling’). Sc sequence data was 
processed using a reference index that covers the spliced transcriptome and the Alevin- Fry package 
(He et al., 2021) (Materials and methods, ‘Quality control, basic processing, and normalization of 
the sc profiles’). Gene and cell quality control are challenging exercises in all sc profiling efforts 
(Svensson, 2019), and especially in fungi because of the small amount of RNA per cell, especially 
under the stress of growth in antifungal drugs (Jariani et  al., 2020). A series of quality control 
procedures were used to estimate gene/cell expression levels (Figure 1—figure supplement 1A, 
Materials and methods, ‘Quality control, basic processing, and normalization of the sc profiles’). 
 
The pipeline identified 18,854 high- quality cells across the 11 drug/time point conditions with an 
average of 1714 cells per sample. On average, 184 transcripts were identified in each cell, however 
there is large dispersion in the right tail representing many cells with significantly more transcripts 
(max. 1984) (Figure 1B). On average, these transcripts arose from 94 unique genes per cell, again 
with large right tail dispersion (max. 825) (Figure 1—figure supplement 1B and C). Since theoretical 
results highlight the importance of many cells over the number of identified genes per cell (Zhang 
et al., 2020), we reasoned that inclusion of the sparse cells (left tail) would strengthen the analyses 
and help identify large subpopulations with strong differentially expressed transcriptional programs 
across the different treatments. Moreover, although the gene by cell count matrix was sparse, there 
was very high concordance between FCZ pseudo- bulk profiles (i.e., aggregated sc counts) at day 2 
and day 3 (R=0.82; Figure 1—figure supplement 2A), indicating that the assay robustly quantifies the 
expression of genes across different batches.

To further investigate the robustness of the assay, we performed bulk RNA- sequencing of FCZ- 
treated cells at day 2 post- treatment (Materials and methods, ‘Bulk transcriptomics’) and compared 
this bulk profile with the pseudo- bulk derived from mapping sc reads to the reference genome but 
ignoring barcodes (unfiltered ‘pseudo- bulk’ profiles; Materials and methods, ‘Construction of pseudo- 
bulk profiles’). The comparison identified 6071 genes with only 172 genes not detected in one or 
more of the pseudo- bulk profiles. We note that missing genes were mostly lowly expressed genes in 
the bulk profile (Figure 1—figure supplement 2B). Moreover, day 2 and day 3 pseudo- bulk replicates 
were significantly correlated with the bulk RNA- sequencing (Figure 1—figure supplement 2C). This 
strongly suggests that the DROP- seq- derived profiles sample the C. albicans transcriptome, capture 
true biological signals, and primarily miss transcripts expressed at lower levels.

In isogenic UT cells, differences in cell transcriptional profiles highlight 
metabolic and stress responses coupled with cell cycle checkpoints
As described above, mid- log phase cells grown under standard conditions were collected for sc 
profiling. In addition to sc transcriptomes, ‘bulk’ DNA- sequencing profiles were generated to verify 
strain isogenicity (Materials and methods, ‘Whole- genome DNA- sequencing’).

To identify the main sources of cell- to- cell variability in UT cells (N=5062  cells), we compiled 
gene signatures for biological processes and responses likely to play a role in microbial phenotypic 

https://doi.org/10.7554/eLife.81406
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heterogeneity based on previous transcriptional profiling studies. Gene signatures often consist of 
genes that are differentially expressed when a specific process is activated (or repressed) compared 
to wildtype cells. Here, the signatures included processes such as cell cycle, stress responses (both 
specific and general), the TCA cycle, and metabolic pathways (such as glycolysis) (Figure 2—source 
data 1, Materials and methods, ‘Cell clustering, trajectory, and signature analyses’). Most of these 
expression signatures were derived in the context of bulk transcriptional studies either directly from 
C. albicans or from other fungi. Where necessary, we identified orthologs of relevant genes in C. albi-
cans (Balakrishnan et al., 2012), while considering regulatory differences between species (Johnson, 
2017; Lavoie et al., 2010).

The score of each signature was measured in each UT cell profile (Materials and methods, ‘Cell 
clustering, trajectory, and signature analyses’); the most variable signatures are displayed in Figure 2A 
and B. One large group of cells exhibited elevated expression of genes involved in both M phase 
and the heat- shock response (cell indices >3000), consistent with a study linking these two processes 
(Senn et al., 2012). We also found that a small group of cells with very high expression of heat- shock 
response exhibited the lowest expression of M and S phase, glycolysis, and RP- coding- related genes 
(cell indices ~2700–3000). These few cells likely experienced cell cycle arrest due to high levels of 
cellular stress. Most other M phase cells with relatively high expression of heat- shock protein- coding 
genes (indices 3000–5000) also exhibited high expression of glycolysis- related genes. In contrast, cells 
with the least evidence of M phase expression, sometimes exhibited high S phase gene expression, low 
expression of the heat- shock signature, and relatively high expression of the oxidative stress signature 
(cell indices 0–2700, Figure 2A and B). Overall, these results indicate that expression heterogeneity 
in UT cells is primarily related to different cell cycle phases, distinct stress responses, and metabolic 
states. Of note, the UT cells were grown in rich media without exposure to any known stressors.

To further investigate the hypothesis that UT cells differentially express genes involved in specific 
stress responses, we chose gene pairs predicted to have mutually exclusive expression in any given 
cell based on the sc transcriptomics profiles; for example, heat- shock protein 70 (HSP70) and dithiol 
glutaredoxin (TTR1), which is involved in the oxidative stress response (Figure 2C; McNemar test, 
p- value <0.001). We constructed a dual fluorescent reporter strain expressing GFP- labeled Hsp70 and 
RFP- labeled Ttr1 (Materials and methods, ‘Cell imaging’). During growth in rich medium, fluorescence 
microscopy revealed a notable level of expression with only one of the two markers detectable in a 
given cell as predicted from the sc profiles (Figure 2D, E, Figure 2—figure supplement 1, McNemar 
test, p- value <0.001). Thus, the distinct transcriptional stress responses observed in the UT population 
data are not due to stress responses during sc profiling. Instead, they most likely represent the cell 
cycle stage and/or the metabolic condition of the cell, emphasizing the significance of metabolic- and 
stress- sensitive phases in the progression of the cell cycle. These results align with several previous 
reports that associate cell cycle phase with the expression of stress response and metabolism- related 
genes (Brauer et al., 2008; Chiu et al., 2011; Hossain et al., 2021; Senn et al., 2012).

Cells display distinct survival responses to FCZ
We next investigated the C. albicans response to antifungal compounds using fungistatic FCZ (1 µg/
ml, 1–2 × MIC50, Figure 3—figure supplement 1A), and fungicidal CSP (1 ng/ml, <0.03 × MIC). These 
concentrations were chosen to ensure a sufficient number of survivors. FCZ targets Erg11p, which 
encodes an enzyme central to ergosterol biosynthesis and membrane integrity (Odds et al., 2003; 
Thamban Chandrika et al., 2018; Wertheimer et al., 2016). At these concentrations, FCZ treatment 
slows growth relative to UT controls in the first days after exposure (Figure 3—figure supplement 
1B). Since tolerance to FCZ should be evident after 2 days of incubation in the presence of the drug 
(Gerstein and Berman, 2020), we profiled our C. albicans cell subpopulations at 2 and 3 days post- 
exposure using drug disk assays (Appendix 1). Finally, we also investigated the C. albicans response 
to low doses of RAPA (MIC80 <1 µg/ml, 0.5 ng/ml; 0.0005× MIC) (Cruz et al., 2001). RAPA is known 
to inhibit tolerance to FCZ (Rosenberg et al., 2018).

We focused on 11,309 good- quality cells captured at 2 or 3 days post- exposure to FCZ, CSP, and 
RAPA, in addition to the 5062 UT cells. Unsupervised analysis was used to identify similar clusters of 
cells. The analysis first uses a deep generative neural network (scVI) to transform the high- dimensional 
expression profiles down to lower dimensions, followed by Leiden clustering to identify groups of cells 
that have similar expression profiles (Materials and methods, ‘Quality control, basic processing, and 

https://doi.org/10.7554/eLife.81406


 Research article      Computational and Systems Biology | Microbiology and Infectious Disease

Dumeaux et al. eLife 2023;12:e81406. DOI: https://doi.org/10.7554/eLife.81406  7 of 35

HSP70 expression

TT
R

1 
ex

pr
es

si
on 1892

2118 83

969

0

3

6

9

0 2 4 6

722

594 495

2648

Scaled mean green intensity (Hsp70)

Sc
al

ed
 m

ea
n 

re
d 

in
te

ns
ity

 (T
tr1

)
A

C

B

D

E

0

1

2

3

0 2 4 6 8

Hsp70, green       Ttr1, red

5 μm

Oxidative stress

RP

S phase

M phase

Glycolysis

Heat-shock stress

0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000
0
1
2
3
4
5

1

2

3
0

1

2

0

2

4 1

2

3

1

2

3

Cell ID

Cell ID

Cell ID

Cell ID

si
gn

at
ur

e 
sc

or
e

si
gn

at
ur

e 
sc

or
e

si
gn

at
ur

e 
sc

or
e

si
gn

at
ur

e 
sc

or
e

Figure 2. Cell- to- cell heterogeneity in untreated (UT) cell populations. (A, B) Expression levels (VISION scores) of curated signatures for individual 
UT cells. Cell order is the same in all graphs. (C) Scatterplot of cells (dots) based on expression level after imputation. Colors indicate: red, TTR1 
expression >1.2 and HSP70 expression <1.2; green, TTR1 expression <1.2 and HSP70 expression >1.2; black, both TTR1 and HSP70 expression >1.2; 
and gray, expression of both genes was <1.2. Distributions of expression are illustrated in histograms above and to the right and the number of cells 

Figure 2 continued on next page
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normalization of the sc profiles’, ‘Cell clustering, trajectory, and signature analyses’). This revealed five 
main clusters containing 92% of all N=16,371 cells, in addition to ~20 small clusters. We used Uniform 
Manifold Approximation and Projection (UMAP) to visualize these patterns in 2D; cells are colored 
by their cluster assignment (Figure 3A). To investigate the resilience of the cell clusters, we randomly 
repeated the clustering process 100 times, each time using a random subset consisting of 95% of 
the cells. Cells originally assigned to four of the main clusters almost always remained in that cluster 
(Figure 3—figure supplement 1C). A significant portion of cells allocated to the (smaller) cluster 5 
(5- purple, N=501 cells, 3%) were categorized together with cluster 3 cells, which is indicative of only 
subtle gene expression differences and suggests the two clusters are collapsed (Figure 3—figure 
supplement 1C). The most variable signatures across clusters are displayed in Figure  3C, where 
color corresponds to the average score (z- score, color bar) across all cells within each cluster. UT cells 
are primarily found in cluster 3- green and to a lesser extent in cluster 2- pink (Figure 3B). CSP cells 
were mostly found in cluster 1- darkpink while RAPA cells were mostly found in cluster 2- lightpink 
(Figure  3B). Biological inferences associated with each of these clusters are further described in 
Appendix 2. The remaining 3% of cells (N=573) were outliers scattered across ~20 distinct clusters 
(‘comet’-like cluster- darkblue; Figure 3A). The ‘comet- like’ clusters appear in random directions from 
the five main clusters. This pattern suggests that the small set of cells in each comet have strong tran-
scriptional similarity, but each such comet is transcriptionally distinct from other comets. The comets 
were primarily observed in FCZ survivors at 2 days (Figure 3B); an investigation of the relevant biology 
underlying comets is discussed in Appendix 2.

Interestingly, a clear bifurcation in the FCZ survivor cell population was evident in the sc tran-
scriptional profile by day 2 (Figure  3D), corresponding to clusters 1- darkpink and 4- turquoise of 
Figure 3A. We term these two distinct states the Ribo- dominant (Rd) state and the Stress- dominant 
(Sd) state, respectively. The bifurcation between the Rd and Sd states becomes more pronounced by 
day 3 (Figure 3E), with nearly every surviving FCZ- treated cell appearing in either the Rd or Sd state.

The Rd state is characterized by high RP gene expression, moderate to high expression of GCN4- 
mediated response genes that activate amino acid biosynthesis, along with low expression of glycolytic 
and carbohydrate reserve metabolic pathway genes, and an absence of heat- shock or hyperosmotic 
stress response genes (Figure 3C- G; Figure 3—figure supplement 2A). By contrast, the Sd state is 
characterized by high expression of heat- shock stress response genes and low expression of RP genes 
(Figure 3C- G; Figure 3—figure supplement 2A).

In total, 797 genes are differentially expressed between the Rd and the Sd state (pseudo- bulk 
from cluster FCZ 1- dark pink versus cluster 4- turquoise; DESeq2, FDR <0.1; Materials and methods, 
‘DGE analysis’; Figure 3—source data 1 ). Among these genes, 230 are overexpressed in Rd cells, 
with half of them involved in protein translation (Figure 3—source data 1 and 2; Figure 3—figure 
supplement 2B). Many highly expressed genes within the Rd response were also involved in rRNA 
processing and mitochondrial cellular respiration.

By contrast, 567 genes are more highly expressed in the Sd state; this set of genes is enriched for 
involvement in cell wall organization, cell adhesion, morphology, virulence, filamentous growth, and 
biofilm formation (Figure 3—source data 1 and 2; Figure 3—figure supplement 2B). Interestingly, 
Sd cells also highly express genes involved in the unfolded protein response (UPR), such as HSP70 and 
YHB1, as well as genes that promote drug tolerance, such as HSP90, GZF3, CCH1, HSP21, HSP70, 
and RIM101 (Delarze et al., 2020; Garnaud et al., 2018; Liu et al., 2015; Mayer et al., 2013; Nagao 
et al., 2012; Rosenberg et al., 2018).

in each group is provided in the top right of the figure. (D) Representative fluorescence micrographic image of RFP- tagged TTR1(red) and GFP- tagged 
HSP70 (green) in a population of isogenic cells showing the mutually exclusive nature of their expression in individual cells. (E) Plot of the mean 
intensities captured in microscopy images of RFP- tagged TTR1 (red) and GFP- tagged HSP70 (green).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Gene signatures related to microbial phenotypic diversity and drug tolerance curated from the literature.

Source data 2. GFP and RFP oligo primers.

Figure supplement 1. Examples of microscopy images of C. albicans cells harboring both a GFP- tagged heat- shock protein 70 (HSP70) and an RFP- 
tagged TTR1.

Figure 2 continued

https://doi.org/10.7554/eLife.81406
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Figure 3. Cell profiles after challenges with different antifungal compounds. (A) Uniform Manifold Approximation and Projection (UMAP) embedding 
of all cells including untreated (UT) cells and cells treated with fluconazole (FCZ) (days 2 and 3), rapamycin (RAPA) (day 2), and caspofungin (CSP) (day 
2). Leiden clustering identified five main clusters and ~20 sparsely populated ‘comets’. (B) Dotplot describing relative size of cluster populations. Rows 
correspond to clusters and columns correspond to drug_day conditions. Dot diameter is proportional to the fraction of cells from each condition 
for a given cluster. The dot color is proportional to the fraction of cells from each cluster for a given condition as shown in the color bar. Numbers 
in parentheses indicate the total cell count in clusters and drug_day conditions. (C) A heatmap depicting the level of activation (VISION z- scores) of 
different signatures. (D–G) The UMAP embedding from panel (A) but where color depicts: (D) density of FCZ at day 2 cells, (E) density of FCZ at day 
3 cells. (F,G) Signature scores for expression of (F) ribosomal protein (RP), (G) and heat- shock stress (HSP) signatures.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Differentially expressed genes in fluconazole (FCZ)- treated cells classified in the Ribo- dominant (Rd) cluster 1 (pseudo- bulk samples) 
compared to FCZ- treated cells in the Stress- dominant (Sd) cluster 4 (pseudo- bulk samples).

Figure 3 continued on next page

https://doi.org/10.7554/eLife.81406
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The sc profiles revealed that isogenic cells that survived FCZ treatment are found in one of two 
distinct states at days 2 and 3. This highlights the heterogeneity of cellular responses to FCZ treat-
ment, which may be associated with drug tolerance and clarifies that one state (Rd) is enriched in 
ribosome and translation- related functions while the other state (Sd) is enriched in genes related to 
genes identified in the stress responses including the UPR and drug tolerance.

Drug tolerance in C. albicans may involve the ribosome assembly stress 
response to facilitate a transition from the Rd to Sd state
The Rd state, evident on days 2 and 3, is marked by increased expression of RP and rRNA processing 
genes. Proper ribosomal biogenesis requires a balance between the synthesis of RP and rRNA. An 
imbalance between RP and rRNA processing can lead to proteotoxic stress and RP aggregation (Tye 
et al., 2019). This stress and aggregation activate the ribosome assembly stress response (RASTR) 
in yeast, which involves heat- shock transcription factor Hsf1 (Albert et al., 2019). Hsf1 subsequently 
upregulates HSP90 and other protein folding- related genes, including HSP70, which are upregulated 
in the Sd state cells. In this context, we propose that the drug tolerance response in C. albicans may 
involve RP aggregation (in Rd cells), which activates RASTR, and induces the expression of Hsf1 (in Sd 
cells). This process might allow cells to transition from the Rd to Sd state, where genes implicated in 
drug tolerance are expressed.

To test this hypothesis, we collected a list of C. albicans orthologs of S. cerevisiae RASTR genes 
(gene list supplied by B Albert, Table 1A) together with a list of C. albicans genes which are targets 
of Hsf1 (Leach et al., 2016; Table 1B). In S. cerevisiae, the characteristic RASTR gene expression 
profile includes decreased expression of several RP genes and increased expression of Hsf1- regulated 
genes involved in protein folding, proteolysis, and reaction to heat (Albert et al., 2019). In our sc 
profiles, Sd cells exhibit increased expression of RASTR upregulated genes and constitutive targets of 
Hsf1 (Figure 4A and B), and we have previously shown (Figure 3E–F) that Sd cells exhibit decreased 
expression of ribosome processing and ribosome protein- encoding genes. This suggests that both 

Source data 2. Gene ontology terms enriched in genes differentially expressed between fluconazole (FCZ)- treated cells classified in the Ribo- dominant 
(Rd) cluster 1 (pseudo- bulk samples) compared to FCZ- treated cells in the Stress- dominant (Sd) cluster 4 (pseudo- bulk samples) listed in Figure 3—
figure supplement 2B.

Figure supplement 1. Differential growth characteristics of strain SC5314 in response to FCZ.

Figure supplement 2. Pathway analysis between the Rd and Sd cell clusters.

Figure 3 continued

Table 1. (A) Orthologous genes in C. albicans associated with ribosome assembly stress response (RASTR) in S. cerevisiae.
(B) Constitutive Hsf1 target genes.

RASTR signature (Albert et al., 2019)

DOWN Ribosome processing

ASC1, RPL10, RPL10A, RPL11, RPL12, RPL13, RPL14, RPL16A, RPL17B, RPL18, RPL19A, RPL2, RPL20B, RPL21A, 
RPL23A, RPL24A, RPL25, RPL27A, RPL28, RPL30, RPL32, RPL35, RPL37B, RPL38, RPL39, RPL42, RPL5, RPL6, RPL8B, 
RPL9B, RPP0, RPP1B, RPS1, RPS10, RPS12, RPS13, RPS14B, RPS15, RPS16A, RPS17B, RPS18, RPS19A, RPS20, RPS21, 
RPS21B, RPS22A, RPS23A, RPS25B, RPS26A, RPS27, RPS27A, RPS3, RPS5, RPS6A, RPS7A, RPS8A, RPS9B, UBI3, YST1

UP

Protein folding, 
response to heat, 
proteolysis UBI4, RPN4, PIN3, STF2, KAR2, MSI3, HSP60, HSP90, HSP70, SIS1, SSA2, HSP104, HSP78, STI1

Glucose and pyruvate 
metabolic process CYP1, PMA1, GLK1, TDH3, CDC19, PGK1

Unknown function MBF1, KRE30, YDJ1, YBN5, ACT1, UBC4

Hsf1 constitutive targets (Leach et al., 2016)

ACE2, ADAEC, AHA1, ALO1, ALS1, ALS3, ALS4, ASR1, BOI2, BUL1, CCP1, CDC37, CDC48, CPR6, CRD2, CTF1, CYC1, CYP1, ERG2, GAP1, GIT3, GLX3, 
GOR1, GPX2, GPX3, GRP2, HCH1, HSF1, HSP104, HSP21, HSP60, HSP70, HSP78, HSP90, IFA14, ITR1, KAR2, MDJ1, MGE1, MIA40, MNN24, MSI3, 
PDC11, PGA56, PGA62, POR1, ROB1, RPM2, RPN4, RPS27A, SBA1, SBP1, SGT2, SIS1, SOK1, SSA2, SSC1, STI1, TRX1, TSA1, TSA1B, YDJ1, YWP1, 
ZCF35, ZPR1, ZWF1

https://doi.org/10.7554/eLife.81406
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the Rd and Sd states may contribute to a RASTR- like response in the days following FCZ exposure, 
and based on the RASTR response, that cells in the Rd state may transition to an Sd state.

Ifh1 is also a key component of RASTR control and signaling (Albert et al., 2019), and the vast 
majority of the targets for this transcription factor are RP genes (N=144 genes of which 41 are putative 
or uncharacterized genes; 64 RP) (Wade et al., 2004). Of these, 103 are detected at significant levels 
in our sc profiles. As shown previously, the RP genes are highest in Rd and lowly expressed in Sd.

The Rd and Sd subpopulations persist at 6 days post-FCZ treatment
Next, we explored whether the Rd and Sd subpopulations would persist once they were no longer 
exposed to the drug. On day 3 the FCZ- exposed cultures were transferred to YPD without drug and 
sc profiling was conducted 3 days later (FCZ day 6, Figure 1A, Materials and methods, ‘Strains, media, 
and drug treatment’). Figure 5A shows the UMAP embedding of the sc transcriptional profiles, using 
only the FCZ day 3 and FCZ day 6 survivor populations.

Leiden clustering was used to identify clusters of similarly behaving cells. Cluster stability analysis 
however did not find strong support separating clusters 1 and 2 (panel B), meaning that they could 
be collapsed together. FCZ day 3 cells are primarily located on the right in clusters 2 and 4; FCZ 
day 6 cells are primarily located on the left in clusters 1 and 3 (panels C and F). We detected the Rd 
response, predominantly in clusters 1 and 2. Specifically, these two clusters have RP and low HSP 
scores (Figure 5D and E). The Sd response is predominantly in clusters 3 and 4. Note that both the 
Rd and Sd subpopulation are detected in FCZ day 6 cells (cluster 1 and cluster 3, respectively). This 
suggests that the bifurcation is still present 3 days post- drug treatment after receiving fresh growth 
media.

Furthermore, because clusters 1 and 2 represent cells with only minor differences in the under-
lying expression patterns (because the two clusters are not stable), and because day 3 FCZ cells are 
primarily in cluster 2 and day 6 FCZ cells are primarily in cluster 1, we can conclude that day 3 and day 
6 FCZ Rd cells have strong similarities. Given the strong resemblance in expression patterns between 
the Rd cells at day 3 and day 6, it is likely that the day 6 cells are ‘descendants’ of day 3 cells. More-
over, these Rd cells largely remain in the same state regardless of the increased time since FCZ expo-
sure, suggesting Rd cells remain viable or largely unchanging at the transcriptional level.

Clusters 3 and 4 harbor day 6 FCZ and day 3 FCZ Sd cells, respectively. There are significantly 
differentially expressed genes (DEGs) between these two groups for example, the alcohol dehydro-
genase signature is most highly expressed at day 6 (Figure 5G and H). Heat- shock stress is slightly 
reduced in day 6 compared to day 3 (Figure 5G). We also observe a substantial change in the relative 
proportions of the Rd and Sd populations: at day 3 we observe 70% Rd and 30% Sd but at day 6 we 
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Figure 4. The Uniform Manifold Approximation and Projection (UMAP) embedding from Figure 3A, which contains fluconazole (FCZ) day 2 and day 
3 cells. Here, each Ribo- dominant (Rd) and Stress- dominant (Sd) cell is colored by its signature score for: (A) C. albicans orthologs of genes upregulated 
in ribosome assembly stress response (RASTR) and (B) constitutive targets of Hsf1.
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Figure 5. Both the Rd and Sd states persist at six days post- fluconazol treatment. (A) Uniform Manifold Approximation and Projection (UMAP) 
embedding of fluconazole (FCZ)- treated cells at days 3 and 6 (after resuspension in fresh media at day 3). Leiden clustering identified four clusters. 
Clusters are related along the trajectory (black) from slingshot analysis. The topology suggests that FCZ Ribo- dominant (Rd) cells at day 6 evolve 
from FCZ Rd cells at day 3. This relationship is also true for FCZ Stress- dominant (Sd) cells. (B) The heatmap depicts cluster stability analysis for the 
four clusters. Purple ticks depict the number of times each cell was assigned to each of the four clusters. Cluster stability analysis failed to strongly 
separate clusters 1 and 2. However, both of these clusters correspond to Rd cells. (C–F, H) The UMAP embedding of cells from (A) was annotated with 
color bars in C–F, H to depict: (C, F) density of cells from day 3 in FCZ and (F) from day 6 (after 3 days in YPD alone); or (D, E, H) signature scores for 
the (D) ribosomal protein (RP), (E) heat- shock stress, and (H) alcohol dehydrogenase gene signatures. (G) A heatmap depicting the average level of 
activation (VISION z- scores, color bar) of different signatures across clusters presented in (A), analogous in methodology to Figure 2C. (I) Growth curves 
for untreated (UT) and FCZ day 3 survivor resuspended in fresh media as measured by OD600 across days.

https://doi.org/10.7554/eLife.81406
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observe an almost even ratio (56% Rd and 44% Sd) (Figure 5C versus Figure 5F). Upon resuspension 
in fresh media, OD600 measurements confirmed that cells exposed to FCZ for 3 days and then resus-
pended in fresh media and allowed to grow for 3 days without drug, proliferate more slowly, and 
reach lower biomass levels than UT cells propagated without drug for 3 days (Figure 5I). Together 
this suggests that Sd cells, unlike Rd cells, are significantly changing over time since the FCZ exposure 
(although they do retain many of the molecular properties of day 3 cells) and may have either a higher 
proliferative capacity or survival rate relative to Rd cells.

We also used computational trajectory analysis to investigate the relationship between these clus-
ters (Figure 5A, black tree; Materials and methods, ‘Cell clustering, trajectory, and signature analyses’, 
slingshot analysis). Slingshot analysis partially orders clusters of cells based on their transcriptional 
profiles; the resultant order is suggestive of how cells evolve their expression patterns over time in a 
manner analogous to an animation. Overall, these findings suggest that there is more evidence that 
day 6 FCZ Sd cells are ‘descendants’ of day 3 FCZ Sd cells compared to, for example, day 6 Sd cells 
‘descending’ from day 3 Rd cells.

Discussion
Sc approaches can facilitate the characterization of phenotypic heterogeneity in microbial popula-
tions by enabling the detailed examination of individual microbial cells, revealing the full range of 
diversity in their gene expression. Here, we characterized two distinct subpopulations of cells with 
different expression profiles – the Rd and Sd states – among isogenic cells treated with FCZ, the most 
widely used antifungal drug. This result supports the observation that antifungal tolerance is due to a 
subpopulation of cells that grows in the presence of FCZ, while other cells in the population do not.

Despite the technical challenges associated with sc profiling of yeast cells, we identified hetero-
geneity in the gene expression of UT prototrophic SC5314 C. albicans cells that reflects the cell cycle 
phase and associated metabolic and stress responses. Specifically, glycolysis and several heat- shock 
genes were more highly expressed during M phase, and oxidative stress genes were more highly 
expressed in a distinct subset of cells that appear to be from G1/S phase. The existence of these 
distinct subpopulations is consistent with observations in the literature (Chiu et  al., 2011; Finkel 
and Hwang, 2009; Hossain et al., 2021; Senn et al., 2012). The magnitude of stress signatures is 
much lower than in cells exposed to antifungal drugs. We also validated the distinct subpopulations 
by fluorescence microscopy with tagged genes differentially expressed in different cell cycle stages. 
Thus, the sc transcriptional profiling detects cell- to- cell heterogeneity within UT C. albicans cultures.

We then examined the transcriptional profiles of individual drug- treated cells. During FCZ expo-
sure, distinct subpopulations of C. albicans appeared: on day 2, FCZ- treated cells were either in the 
Rd or Sd state with a higher frequency of Rd cells. By day 3, the Sd subpopulations become more 
balanced suggesting either the Sd subpopulation is more proliferative, or perhaps that cooperation 
between the two subpopulations is required, for example, for the exchange of metabolites. Before 
and after treatment, the vast majority of cells are in the white morphology so C. albicans morpholog-
ical state does not explain this Rd/Sd population split.

The Rd response is characterized by high expression of ribosomal protein (RP) and ribosomal RNA 
(rRNA) processing genes. An imbalance of RP and rRNA can lead to proteotoxic stress and RP aggre-
gation in S. cerevisiae (Tye et al., 2019), and might do so as well in C. albicans. The Sd state involves 
the heat- shock transcription factor Hsf1, which upregulates HSP90, HSP70, and other genes in the 
UPR, which have been shown to suppress RP expression in S. cerevisiae to protect against toxic 
protein build- up, and restores cell growth (Albert et al., 2019). The molecular profile of Sd cells is 
consistent with this transition exhibiting high expression of RASTR- induced genes, for example, Hsf1 
constitutive target genes including HSP70, HSP90, and disaggregases HSP21, -60, -78, and -104, 
along with low expression of RP genes and rRNAs. Importantly, Sd cells also highly express several 
genes associated with drug tolerance (Delarze et al., 2020; Garnaud et al., 2018; Liu et al., 2015; 
Mayer et al., 2013; Nagao et al., 2012; Rosenberg et al., 2018) as well as genes involved in filamen-
tous growth, adhesion, and biofilm formation. This is consistent with a potential role of Hsf1 (Hahn 
et al., 2004; Leach et al., 2016; Leach et al., 2012; Veri et al., 2018) as a trigger of RASTR.

Overall, the molecular profiles of the Rd and Sd states suggest a model in which some fraction of 
the cells exposed to FCZ initially enter the Rd response and trigger the RASTR response (Albert et al., 
2019) which in turn causes the cells to transit into the Sd state. This could suggest that Sd cells may 
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represent a C. albicans subpopulation that have mounted a successful drug tolerance stress response. 
Alternatively, it could be the case that both subpopulations are necessary for cell survival.

We also treated cells with RAPA (analysis in Appendix 2). RAPA in isolation is considered to have 
weak antifungal properties, but drug tolerance (but not drug resistance) is ablated when used in 
combination with FCZ (Rosenberg et al., 2018). We did not identify any RAPA- treated cells in the Rd 
state. This is perhaps not surprising given that RAPA targets Tor1 and shuts down ribosomal biogen-
esis, an important component of the Rd state. In fact, RAPA- exposed cells also had the weakest RP 
expression. Of note, RAPA specifically triggers the expression of genes involved in hyperosmotic 
stress. Previous work established that the Tor1 pathway controls phase separation and the biophysical 
properties of the cytoplasm by tuning macromolecular crowding (Delarue et al., 2018). Hyperosmotic 
stress response to RAPA exposure might reflect disruption of the biophysical properties of the cyto-
plasm, altering the osmotic balance in cells.

Whereas nearly every RAPA- treated cell had an Sd transcriptional profile, nearly every CSP- treated 
cell after 2 days exposure had an Rd- like transcriptional profile (analysis in Appendix 2). The echi-
nocandin CSP is fungicidal with a mechanism of action distinct from FCZ – it inhibits β-1,3 glucan 
synthesis and disrupts the fungal cell wall. We did not find any CSP- treated cells in the Sd subpopula-
tion by day 3. Although we used low concentrations of CSP to avoid cell aggregation and therefore it 
is possible that alternative CSP concentrations could induce Sd cells, it appears that survivors of the 
fungicidal drug are transcriptionally far more homogeneous at early time points (days 2–3).

After resuspension in fresh media and 3 days of growth (day 6), both the Sd and Rd subpopulations 
persist. In fact, now Sd outnumbers the Rd subpopulation. Their persistence hints that these surviving 
cells have some ‘memory’ of treatment with FCZ. In the case of Rd cells, there are few transcriptional 
changes between days 3 and 6. For Sd, there is a downregulation of the heat- shock response and 
an increase in the alcohol dehydrogenase pathway, suggestive of cellular proliferation in the fresh 
medium. Sd cells at day 6 still however largely retain differential expression of genes, pathways, and 
proteins identified in Sd cells at day 3.

Conclusions
The use of a nanoliter droplet- based assay adapted for fungal cells enabled a detailed sc analysis 
of C. albicans in the absence and presence of antifungal drugs over a period of days. The assay was 
cost- effective and encountered minimal issues or failed runs. Studies of thousands of individual cells 
enriched our understanding of community structure and population heterogeneity. Specifically, this 
study refines published bulk transcriptome studies by differentiating between genes, pathways, and 
responses that are expressed universally in all cells, and those that are restricted to specific subpop-
ulations. Here, by examining cellular trajectories across populations in a high- throughput manner, we 
obtained new insights into time- sensitive processes, such as the emergence of drug tolerance during 
2–3 days of drug exposure and the existence of cells with Rd and Sd states, which reflect two different 
cellular states within the RASTR response described as a molecular signature of an S. cerevisiae stress 
response. If the Rd response proves generalizable to other drug treatments, disrupting the Rd to Sd 
tolerance transition or the Sd response itself could represent an innovative therapeutic approach for 
other antifungal treatments.

Materials and methods
Strains, media, and drug treatment
C. albicans cultures for sc-RNA-, bulk RNA- and DNA-sequencing
C. albicans SC5314 cells were streaked out from glycerol stocks in –80°C on YPD agar plates (2% 
D- glucose, 2% peptone, 1% yeast extract, 0.01% uridine, 2% agar) and incubated at 30°C for 48 hr. 
Afterward, a single colony of cells was transferred into YPD liquid media (2% D- glucose, 2% peptone, 
1% yeast extract, 0.01% uridine) and incubated at 30°C for 12–16 hr.

Preparation for sc profiling via DROP-seq
For UT cells, a single colony of SC5314 cells were transferred to 5  ml YPD and grown overnight 
to yield ~108 cells/ml. Cultures were then diluted to an OD600 of 0.1 in fresh 50 ml YPD liquid and 
incubated at 30°C in a shaker incubator. Cells were collected when OD reached 0.5–0.9 in order to 
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maximize the number of cells in mid- log phase. Cells were pelleted by centrifugation, 1 ml of RNAl-
ater was added (Sigma # R0901), the suspended cells were incubated for 10 min at room temperature, 
and the resulting culture was frozen at –20°C for later use.

For treated cells, we performed the following approach to ensure a sufficient number of survivor 
cells for profiling across different drugs and time points: cells were pelleted and resuspended in 1 ml 
of YPD, 250 μl of this suspension was combined with 15 ml of fresh YPD and incubated at 30°C with 
shaking until the culture reached an OD600 of 0.5–0.6. Finally, ~108 of these cells were seeded into 
10 ml of YPD. Each suspension was then subjected to drug treatment.

FCZ (Sigma #F8929) was used at 1 µg/ml, which is from 1× to 2× the dosage relative to the MIC50 
for SC5314 in YPD (Figure 3—figure supplement 1). CSP (Sigma #SML0425), a compound that inter-
rupts cell wall biosynthesis (Cappelletty and Eiselstein- McKitrick, 2007; Stevens et al., 2004; Yang 
et al., 2017), was used at 1 ng/ml, which is well below the reported MIC50 and was chosen to ensure 
a sufficient number of non- aggregated survivors to generate sc profiles. For RAPA, a subinhibitory 
concentration of 0.5 ng/ml was chosen based on previous studies that established such levels are 
sufficient to generate a fungicidal synergistic effect when given concomitantly with FCZ (Rosenberg 
et al., 2018). Each drug was added to the individual cultures and incubated at 30°C for 48 or 72 hr. 
For the day 6 population, day 3 survivors were washed twice, and resuspended in 10 ml of fresh YPD.

At each time point, cultures were collected and strained (pluriStrainer 20 µm, pluriSelect) before 
placement in fresh tubes. Straining was done in order to minimize the likelihood of clogging in the 
microfluidic due to rare but large hyphae and pseudohyphae morphologies. We observed that germ 
tubes up to four times the length of the mother cell can still be processed for DROP- seq analysis. Such 
cells are well within the hyphal transcriptional profile (Nantel et al., 2002), suggesting that our results 
may contain some profiles of hyphae and pseudohyphae cells. After filtering, the vast majority of cells 
were in the yeast white morphology with less than 0.2% of cells in a filamentous morphology (hyphae 
or pseudohyphae) after manual counting ~100 microscopy images with an average of ~50 cells per 
slide for each such population. All cultures yielded a sufficient population of survivors for downstream 
sc transcriptional profiling, bulk transcriptional profiling, bulk DNA genomic profiling, and/or micros-
copy. Cultures were washed with 1 ml of RNAlater twice. Cells were then resuspended in 1 ml RNAl-
ater and incubated at room temperature for 10 min before storage at –20°C until sc profiling with 
DROP- seq.

Cultures for OD600 analyses
Three cultures were inoculated with single cultures and incubated overnight in YPD at 30°C. The 
following morning, cultures were diluted to an OD600 of ~0.5 in either fresh YPD or YPD with 1 µg/
ml FCZ (same concentration used for the DROP- seq experiment). OD600 was measured immediately 
without dilution, then every 24 hr via a 1:100 dilution for a total of 72 hr (Figure 3—figure supple-
ment 1A). To investigate the growth of day 3 FCZ survivors, three cultures previously grown for 72 hr 
in either YPD or YPD with 1 ug/ml FCZ were diluted to an OD600 of ~0.5 in fresh YPD without drug. 
OD600 was measured immediately without dilution and then every 24 hr via a 1:100 dilution for a total 
of 72 hr (Figure 5I).

Spheroplasts
The C. albicans setting required an optimized protocol for the removal of the cell wall and to induce 
stable spheroplasts for sc profiling. Toward this end, we experimented with different concentrations of 
zymolyase (0.1, 0.2, and 0.4 U zymolyase (BioShop # ZYM002) with 107 cells in 100 µl of sorbitol 1M) 
at different time points (incubated at 37°C for 10, 20, 30 min) before processing with the DROP- seq. 
To compare cultures grown under different conditions, cells were stained with calcofluor white and 
imaged using a Leica DM6000 microscope. We concluded that concentrations in the range 0.15–
0.25 U after 25 min are able to induce spheroplasts that remain sufficiently stable for processing with 
our DROP- seq.

Sample preparation for sc profiling
At the time of DROP- seq profiling, an aliquot of 107 (OD600=0.68) cells was separated from the culture 
in Materials and methods, ‘Strains, media, and drug treatment’, and washed three times with sorbitol 
1M solution. The cells were then resuspended in 100 μl sorbitol 1M+0.25 U zymolyase and incubated 
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at 37°C for 25  min (as per our findings in Materials and methods, ‘Spheroplasts’). Next, the cells 
were pelleted and resuspended again in 0.5 ml of cold and fresh RNAlater for 5 min. Now, the cells 
were washed (centrifuged and pelleted) with 1 ml of washing buffer (1 M sorbitol, 10 mM TRIS pH 8, 
100 µg/ml BSA) three times. Finally, 106 cells (OD600=0.08) were resuspended in 1.2 ml of the washing 
buffer. This cell suspension was then used as input to the DROP- seq device.

Sample preparation generally follows the protocol given by Macosko et  al., 2015, with some 
exceptions. Whereas Macosko et al. recommend a ratio of 100K mammalian cells to 120K beads for 
DROP- seq, we found that a ratio of 1M cells for 120K beads generated a sufficient yield of cDNA as 
per the Tapestation (Agilent Inc) device. Jackson et al., 2020, use 5M cells as input to the Chromium 
(10X Inc) system. Furthermore, whereas Macosko et al. use 1 ml of lysis buffer, we use 1.2 ml. Instead 
of 13 PCR cycles, we use 17 (Jackson et al. uses 10 cycles). Samples were sequenced using a NEXT- seq 
500 (Illumina Inc) following the standard Macosko et al. protocol set to yield an estimated 200 million 
reads/sample.

Quality control, basic processing, and normalization of the sc profiles
All computations were performed using Python version 3.9.6 (van Rossum and Drake, 2009) or 
R version 4.0.4 (R Development Core Team, 2021). Gene abundances were estimated from raw 
sequencing data using the end- to- end pipeline alevin- fry (He et al., 2021) which performs UMI 
deduplication and reduces the number of discarded (multimapped) reads. The pipeline utilizes a refer-
ence index covering the spliced transcriptome extracted from the latest version of C. albicans strain 
SC5314_A22 (haplotype A, version 22; GCF_000182965.3). The Unspliced- Spliced- Ambiguous (USA) 
mode was used to separately keep track of the types of transcripts from which UMIs are sampled. 
A gene- by- cell matrix for each sample was obtained by summing reads labeled as either ‘spliced’ or 
‘ambiguous’ by alevin- fry.

We started by filtering genes from downstream analyses with a zero sum count (the count across 
all cells), as were cells with less than 5, or more than 2000 transcript counts (Figure 1—figure supple-
ment 1A). Droplets almost always capture ambient ‘free floating’ RNA that is present in the suspen-
sion. Therefore, even when a microparticle is not captured alongside a cell in a droplet, sequencing 
still yields reads originating from this ambient RNA. However, the number of such reads is far lower 
than a droplet with a successful cell capture. Cells were included in their analysis if their profiles 
significantly deviated from levels indicative of ambient RNA in the suspension using EmptyDrops 
(FDR <0.01) (Lun et al., 2018). SCANPY (Wolf et al., 2018), a python- based toolkit, and SingleCell-
Experiment (Amezquita et al., 2020), a R/Bioconductor package, were used for data quality control, 
filtering of genes and downstream visualization. We removed genes (n=869) that were expressed in 
less than 20 cells (Figure 1—figure supplement 1C).

We then use scVI (Gayoso et al., 2021; Lopez et al., 2018) version 0.12.2, a Bayesian deep neural 
network architecture which implements a probabilistic model of mRNA capture and uses a variational 
autoencoder to estimate priors across batches and conditions. Models were built using default param-
eters for different grouping of samples: (i) UT cells, (ii) UT cells and CSP, RAPA, FCZ treated at day 2 
(and 3), and (iii) FCZ- treated cells at days 3 and 6. All models were adjusted for batch and library size. 
We trained scVI ’s variational autoencoder and stored the latent representation for visualization 
and downstream analyses. We reduced the inferred latent spaces to two dimensions via the UMAP 
tool using the implementation of umap- learn (McInnes et al., 2020) in SCANPY (Wolf et al., 2018) 
(min_dist = 0.3). When analyzing the level of expression of individual genes, missing or dropout values 
were first imputed using MAGIC (van Dijk et al., 2018).

Bulk transcriptomics
Total RNA was extracted from FCZ- treated cells at day 2 post- exposure, which were grown according 
to Materials and methods, ‘Preparation for sc profiling via DROP- seq:’, using the QIAGEN RNeasy mini 
kit protocol. RNA quality and quantity were determined using a Bioanalyzer (Agilent Inc). Paired- end 
read sequencing (2×50 bp) was carried out on a NextSeq500 sequencer (0.5 Flowcell High Output; Illu-
mina Inc). Raw reads were pre- processed with the sequence- grooming tool cutadapt (Martin, 2011) 
version 0.4.1 with quality trimming and filtering parameters: --phred33 --length 36 -–2colour 
20 --stringency 1 -e 0.1. Each read pair was mapped against C. albicans strain SC5314_A22 
(haplotype A, version 22; GCF_000182965.3) downloaded from the NCBI using STAR (Dobin et al., 
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2013) version 2.7.9a with the following filtering parameters: --outSAMmultNmax 1 --outSA-
Munmapped Within --outSAMstrandField intronMotif. We obtained ~13 million reads of 
which 88% were uniquely mapped along the genome. The read alignments and C. albicans genome 
annotation strain SC5314_A22 (haplotype A, version 22; GCF_000182965.3) were provided as input 
to featureCounts() from the Rsubread package (Liao et al., 2019) version 2.4.3 to estimate gene 
abundances. The following parameters were used: isPairedEnd = TRUE, countReadPairs = 
TRUE, requireBothEndsMapped = TRUE, checkFragLength = FALSE, countChimeric-
Fragments = FALSE, countMultiMappingReads = TRUE, fraction = TRUE.

Construction of pseudo-bulk profiles
Throughout the manuscript, pseudo- bulk profiles refer to transcriptional profiles that are derived from 
the sc reads by ignoring barcodes. This pipeline is depicted in Figure 1—figure supplement 2A. 
By ignoring the R1 (left) read of the sc profile that contains the cellular barcode, we are effectively 
performing ‘bulk’ RNA- sequencing using only the R2 (right) read that aligns to a transcript in the 
sample. This collapses all cells to a single profile. We compared two different techniques to compute 
pseudo- bulk profiles, or we can first use the barcoded reads to partition cells into classes (e.g., Rd 
versus Sd) and then form a pseudo- bulk profile specific to each of the classes. The unfiltered pseudo- 
bulk data is derived from counting raw reads aligned to the reference genome using the STAR tool 
(Dobin et al., 2013). The filtered pseudo- bulk dataset is obtained by first applying our sc pipeline 
(alevin- fry followed by EmptyDrops) and then summing across all cells. The first is closer in spirit 
to true bulk (single read) profiling, while the second approach filters reads, cells, and genes in the 
same manner as sc analyses and therefore represents a middle point between bulk and sc profiling. 
A comparison of filtered pseudo- bulk FCZ profiles at day 2 and 3 datasets indicated that the assay is 
robustly quantifying the expression of genes across different batches (Figure 1—figure supplement 
2A).

A comparison of bulk profiles versus unfiltered pseudo- bulk for the FCZ profiles at days 2 and 3 
indicated that both methods identified all but 297 of the same genes. The missed genes tended to 
be expressed at low levels in the bulk profiles (Figure 1—figure supplement 2B). Moreover, day 2 
and day 3 pseudo- bulk profiles were significantly correlated with ‘true’ bulk RNA- sequencing profiles 
(R ranges from 0.67 to 0.74; Figure 1—figure supplement 2C). Here ‘true’ bulk RNA- sequencing 
profiles were generated as described in Materials and methods, ‘Bulk transcriptomics’.

Whole-genome DNA-sequencing
C. albicans populations were grown as described in Materials and methods, ‘Strains, media, and 
drug treatment’, although we did not apply a cell filtration step to remove filamentous cells. Prepara-
tion of genomic DNA used the MasterPure Yeast DNA Purification Kit (Lucigen # MPY80200) with a 
NextSeq500 – 1 flowcell mid output (130M fragments), 150 cycles pair- end reads (maximum 2×80 nt), 
yielding on average 23.9 million reads per sample (1 UT, FCZ at days 2, 3, 6, and 12). This gives an 
expected sequencing depth of 224 since the size of the C. albicans genome is ~16 Mb.

Raw reads were pre- processed with the sequence- grooming tool cutadapt (Martin, 2011) version 
0.4.1 with quality trimming and filtering parameters: --phred33 --length 36 -q 5 --strin-
gency 1 -e 0.1. Analyses followed a previous study by Ford et al., 2015, which also examined C. 
albicans complete genomes, although we used a more recent version A22 of the C. albicans SC5314 
haplotype A genome for read mapping (downloaded from the Candida Genome Database; https://
www.candidagenome.org/). Briefly, reads were mapped using the BWA alignment tool (Li and Durbin, 
2009) and RealignerTargetCreator and IndelRealigner from GATK (McKenna et al., 2010) 
were used for re- alignment. SNPs were detecting using Unified Genotyper (GATK version 1.4.14) 
using the same filtration criteria as reported in Ford et al. Determination of copy number and loss- of- 
heterozygosity was performed using GATK with the strategy reported in Ford et al.

Restricting attention to the UT samples, our observed sequencing depth was just under 200 and 
we identified approximately the same number of single nucleotide polymorphisms (N=3304) and the 
same number of insertions/deletions (181/255 resp.) as a previous whole- genome sequencing effort 
(Cuomo et al., 2019) using their bioinformatic pipeline. Although mutations were observed in some 
reads at some genomic loci, the samples were not enrichment for mutations that occurred more often 
than the rate of sequencing error which is 10–3 after correcting for multiple testing. This error rate is 
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in line with estimates of the spontaneous mutation rate for C. albicans (Ene et al., 2018), together 
suggesting that the population is near isogenic without any significantly large subclones. Given that 
the error rate for copy number variants (e.g. loss, amplification) is lower than polymorphisms (Ene 
et al., 2018) and the duration of cell expansion before drug exposure (<2 days), it would be unlikely 
that spontaneous mutations explain the degree of heterogeneity that was observed 2–3 days post- 
drug exposure.

Cell clustering, trajectory, and signature analyses
To identify subpopulations of cells with similar gene expression patterns in an unbiased, unsuper-
vised manner, we applied Leiden clustering (Traag et al., 2019) on the latent space generated by 
scVI (resolution of 0.5 for the analysis combining UT, FCZ day 2 and 3, CSP, and RAPA- treated cells 
and resolution of 0.4 for FCZ day 3–6 analyses). To test the robustness of the clustering process, we 
repeated the clustering process 100 times, each time using a random subset of 95% of the cells. With 
each such random set, we repeated the scVI model building, followed by Leiden clustering to identify 
clusters. The mapping from the original clusters to the new clusters was then established based on 
the maximum overlap in cell membership between the original and newly formed clusters. Finally, we 
counted the frequency that each cell was assigned to each cluster over all the iterations.

The lineage trajectory of day 3 and 6 FCZ- treated cells was performed using the R/Bioconductor 
slingshot package version 1.8.0 with default parameters (Street et al., 2018).

To investigate the key sources of variability across cell subpopulations, we curated 43 gene signa-
tures related to microbial phenotypic diversity and drug tolerance including the cell cycle, TCA cycle, 
specific and general stress responses, metabolic pathways, amino acid biosynthesis, efflux pumps, 
and specific drug responses among others (Azadmanesh et al., 2017; Berman, 2006; Côte et al., 
2009; Enjalbert et al., 2006; Enjalbert et al., 2003; Gasch et al., 2000; Hardwick et al., 1999; 
Hinnebusch, 2005; Jackson et al., 2020; Natarajan et al., 2001; O’Duibhir et al., 2014; Pais et al., 
2019; Sanglard, 2016; Sanglard et al., 2003; Tsai et al., 2019; Yang et al., 2017; Figure 2—source 
data 1). In some cases, gene signatures from the literature were derived in other organisms and 
required orthology mappings to C. albicans.

Briefly, signatures of cell cycle phases were identified as transcriptional expression patterns in 
synchronous C. albicans populations (Berman, 2006; Côte et al., 2009) or were expert- curated and 
well- established cell cycle genes found in distinct clusters of S. cerevisiae sc profiles (Jackson et al., 
2020). Signatures specific to certain stresses were found by transcriptional profiling of C. albicans 
challenged by temperature, osmotic and oxidative stress under conditions that permitted >60% cell 
survival (Enjalbert et al., 2003) or in C. glabrata (Pais et al., 2019). We also curated more general 
non- specific stress signatures identified in C. albicans (Enjalbert et al., 2006) or S. cerevisiae (Gasch, 
2007; Gasch et al., 2017; Tsai et al., 2019). Previous studies established the existence of a ubiquitous 
environmental stress response (ESR) in S. cerevisiae which is deregulated in response to many different 
environmental perturbations (Gasch, 2007; Gasch et al., 2000). The ESR is divided into the induced 
(iESR) and repressed (rESR) subcomponents. The iESR is characterized by overexpression of heat- 
shock and oxidative stress genes in addition to genes involved in central carbohydrate metabolism 
and energy generation (Gasch, 2007; Gasch et al., 2000). Previous studies have noted a complex, 
intricate relationship between the ESR and cell cycle phase (O’Duibhir et al., 2014; Regenberg et al., 
2006). Some investigations suggested a smaller core ESR in C. albicans (Enjalbert et al., 2006) which 
may have evolved due to the unique host environment with the need to grow with different substrates 
(Brown et  al., 2014). Curated metabolic signatures include lowly expressed glycolytic genes and 
highly expressed TCA cycle genes identified during diauxic shift or RAPA treatment in yeast (DeRisi 
et al., 1997; Hardwick et al., 1999) as well as GCN4- driven amino acid biosynthesis, another well- 
defined metabolic signature conserved between S. cerevisiae and C. albicans (Hinnebusch, 2005; 
Natarajan et al., 2001).

The signature analyses start with the VISION tool which estimates a signature score for every cell 
(DeTomaso et al., 2019) using the batch- adjusted normalized counts returned by scVI’smodel. The 
distribution of individual scores for cells classified in each cluster can be depicted using the empirical 
cumulative distribution function. These distributions were further compared using the Kolmogorov- 
Smirnov test. We then used the median to summarize signatures scores of cells within each cluster and 
selected signatures which were the most variable across clusters (sd >0.05 for the analysis combining 
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UT, FCZ- day 2 and 3, CSP-, and RAPA- treated cells or combining FCZ- treated cells at days 3 and 6; 
). Heatmaps were used to depict the median scores (z- score, color bar) of the selected signatures for 
each cluster.

DGE analysis
Sc differential gene expression (DGE)
scVI’s model allows us to approximate the posterior probability of the alternative hypotheses (genes 
are different) and that of the null hypotheses through repeated sampling from the variational distribu-
tion, thus obtaining a low variance estimate of their ratio (i.e., Bayes factor). We used this approach 
to identify genes differentially expressed in the combined and individual comet clusters compared to 
the other clusters (Appendix 2—figure 2A, B).

Pseudo-bulk DGE and gene ontology (GO) enrichment analysis
We also conducted pseudo- bulk differential gene expression analyses which allow for a dramatic 
reduction in the number of zeros in the data by aggregating cells within each replicate. This approach 
has been found to achieve the highest fidelity to the experimental ground truths significantly reducing 
the risk of false discoveries (Squair et al., 2021). As described in Materials and methods, ‘Construc-
tion of pseudo- bulk profiles’, filtered pseudo- bulk profiles were obtained by summing counts of 
selected cells within each replicate. In order to use DESeq2 (Love et al., 2014), a standard R/Bioco-
ductor package used for differential analysis of count data, we require at least two replicates within 
each group of comparison. If only one replicate was available (e.g., FCZ at day 6), we partitioned the 
selected cells of a single replicate into two groups randomly before forming pseudo- bulk profiles. We 
then used DESeq2 default parameters to perform DE analysis and selected genes with Benjamini- 
Hochberg FDR <0.1 (Benjamini and Hochberg, 1995). Models were adjusted for batch affects where 
relevant.

Finally, we identified enrichment of biological processes in lists of significantly over- and under- 
expressed genes using the R/Bioconductor ViSEAGO package (Brionne et  al., 2019). ViSEAGO 
includes all algorithms developed in the R/Bioconductor topGO package including the weight01 fisher 
test that takes into account the topology of the GO graph (Alexa et al., 2006). Biological processes 
with weight01 p- value <0.01 were defined as significantly enriched in the gene list.

Cell imaging
To validate the subpopulation structure identified by the sc transcriptomics, we choose markers 
representative of distinct clusters. Cells were transformed with GFP and RFP fusion constructs for 
HSP70 and TTR1 marker genes respectively using a CRISPR/Cas9 protocol (Min et al., 2016) with 
primers described in Figure 2—source data 2. Strain SN76(his1Δ/his1Δ, arg4Δ/arg4Δ, ura3Δ/ura3Δ) 
was chosen for gene tagging since it is a derivative strain of SC5314 but with multiple auxotrophic 
markers. These markers allow for convenient selection of successfully transformed cells.

Benchling (https://benchling.com) was used to design the sgRNAs. We followed the CRISPR/Cas9 
protocol with the plasmid pV1093 from Min et al., 2016. This includes two PCRs to fuse the SNR52 
promoter to the sgRNA scaffold and terminator. The third PCR amplifies the final sgRNA cassettes. 
Two different plasmids pENO1- iRFP- NATr (Plasmid #129731, Addgene Inc) and pFA- GFP- HIS1 were 
used to design the repair segments. The construction of the Cas9 cassette proceeded as per Min et 
al. Amplification of the Cas9 cassette with PCR used the following schedule: 98°C for 3 min, 98°C for 
30 s, 63°C for 30 s, 72°C for 5 min and 30 s. Steps 2–4 have been repeated for 34 rounds followed by 
72°C for 10 min and finally the reaction finished in 4°C. The repair DNA must be amplified with the 
designed primers (Figure 2—source data 2) in 8–12 PCR tubes with 0.1 μl plasmid (500 ng/ml), 2.5 μl 
forward primer, 2.5 μl reverse primer, 1 μl 10 mM dNTP, 33.65 μl nuclease free water, 10 μl 5× HF PCR 
buffer, and 0.25 μl phusion polymerase in each tube.

Cells that were successfully transformed were grown and harvested in a manner identical to that 
used for the sc experiments (Materials and methods, ‘Strains, media, and drug treatment’). At time of 
microscopy, cells were collected, washed with H2O, and transferred to minimum media to minimize 
the background noise from normal YPD media. Afterward, cells were mounted onto the uSlide and 
imaged with a Leica DM6000 microscope at 1000× (~50 images/time point; ~50 cells/image).
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Appendix 1

Drug diffusion assays with FCZ-treated cells at days 1–6
Diffusion disk assays provide a means to measure tolerance and resistance of a fungal population 
to a drug (Gerstein et al., 2016). In our case, we use these assays to measure tolerance and 
resistance of C. albicans in response to FCZ. Toward this end, two SC5314 colonies were 
transferred from YPD agar plates to 5 ml YPD liquid media and incubated at 30°C overnight. 
Cells were washed the next day with PBS 1× twice and an aliquot of 106 cells/ml was transferred 
into an Eppendorf tube. 100 µl of this suspension was plated on YPD agar and spread evenly with 
a cell spreader. A FCZ disk (Bio- Rad #62802) was placed at the center of the plate and incubated 
at 30°C. This was repeated three times (replicates 1–3) for a total of two biological replicates 
(experiments 1–2).

Images were captured every 24 hr for 6 days (Appendix 1—figure 1). Appendix 1—figure 2 
describes how the radius (RAD) and the fraction of growth (FoG) are estimated from these images 
to provide measures of drug resistance and tolerance, respectively. We use the diskimageR R 
package to estimate the intensity of 72 lines (in 5° increments around the circle) from the disk 
edge to the rim of the plate for each replicate across 6 days post- exposure (Appendix 1—table 
1). A Kruskal- Wallis χ2 test was used to test whether there was a difference in the mean of either 
the FoG or RAD between day 1 and the remaining time points versus a null hypothesis of no 
difference.

Appendix 1—figure 1. Fluconazole (FCZ) disk assay results across 6 days. Two cultures (biological replicates E1 
and E2) of C. albicans SC5314 were grown in YPD and spread on three plates (technical replicates R1, R2, and R3). 
The bright white spot at the center of the plate is the FCZ diffusion disk.

https://doi.org/10.7554/eLife.81406
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Appendix 1—figure 2. Diffusion disk assay experiments with fluconazole. (A) A C. albicans culture with 
fluconazole (FCZ) disk in the middle of plate. The red radial line represents 1 of 72 measurements taken every 5°. 
(B) Top is a blown- up and restricted image of the red line from (A) and bottom represents the pixel intensities from 
0 (edge of disk) to 40 (edge of plate). (C) Gray curves are from the 72 measured radial lines. Black represents the 
average of these 72 measurements per mm from disk edge (x- axis). Light blue dot is the RAD20, defined as the 
point where there is a 20% reduction in growth. Middle blue dot is the RAD50 and dark blue represents the RAD80. 
The FoG20 is defined as the fraction of the area under the black line from 0 to the RAD20 (i.e., the amount of growth 
observed) divided by the total potential growth (delimited by dotted line). The FoG50 and FoG80 are defined 
analogously (adapted from Gerstein et al., 2016).

Appendix 1—table 1. Two biological (independent) C. albicans SC534 cultures and three technical 
replicates were subjected to fluconazole (FCZ) diffusion disk assay (DDA) experiments and averaged.
The table represents the output from diskimageR over 6 days of imaging. The increase in tolerance, 
which is measured by the fraction of growth (FoG), from day 1 to day 2 is significant as is the 
increase from day 2 to day 3 (both p<0.001, Kruskal- Wallis χ 2). There is a slight but statistically 
reduction in the RAD20, suggesting that there has been a small increase in resistance (p<0.05, 
Kruskal- Wallis χ2). However, we can see that the vast majority of the culture is not resistant.

Day FoG RAD20

1 0.14 16.33

2 0.21 14.17

3 0.37 12.67

4 0.37 13.00

5 0.38 12.83

6 0.4 13.00

https://doi.org/10.7554/eLife.81406
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Appendix 2
Supplemental results
UT cells are found primarily in cluster 3- green and to a lesser extent in cluster 2- pink (Figure 3A–B; 
Appendix 2—figure 1A). CSP cells were mostly found in cluster 1- darkpink while RAPA cells were 
mostly found in cluster 2- lightpink (Figure 3A and B; Appendix 2—figure 1). The remaining 3% of 
cells (N=573) were outliers scattered across 19 distinct clusters (others cluster- darkblue; Figure 3A 
and B) that we termed ‘comets’. In this section, we will describe the biological characteristics for 
each of these clusters.

UT cells show expectedly higher glycolysis gene expression compared to 
antifungal-treated cells on days 2–3
UT cells have the highest expression of the glycolysis and carbohydrate reserve metabolism pathways 
(Figure 3C, green column; Appendix 2—figure 1). This is consistent with the fact that UT cells were 
collected during log- phase before glucose became a limiting factor, while all non- UT cells were 
harvested at least 2 days post- media renewal.

Exposure to FCZ: emergence of ‘comets’
In addition to the five clusters that comprise the vast majority of all profile cells, we observe 19 
small clusters that are scattered across the UMAP embedding (Figure 3A). We term these 19 small 
clusters ‘comets’. Using the sc profiles, we investigated whether there is evidence that the comets 
are interesting biological phenomena versus stochastic noise from the sc profiling technique. Since 
the small size of the comets (comets contain 7–126  cells) creates significant technical/statistical 
challenges, our investigation and findings are built using several distinct analysis methods.

DEGs: all comets combined versus the five major clusters. All cells that belong to comets were 
combined into one ‘super comet’ and contrasted against the five major clusters to identify DEGs using 
two different approaches (Materials and methods, ‘DGE analysis’; Appendix 2—figure 2; Appendix 
2—figure 2—source data 1). These analyses identified GCN4 (a transcriptional activator of the 
general amino acid response), and ILV2 and ILV5 (which encode for enzymes involved in branched- 
chain amino acid biosynthetic pathway) (Appendix 2—figure 2 ; Bayes factor >2.5 and proportion of 
non- zero value >0.2). The ILV pathway is known as a fungal amino acid starvation therapeutic target 
and ILV5 is recognized as a component in the C. albicans amino acid starvation response (Kingsbury 
and McCusker, 2010; Tripathi et al., 2002). It is regulated by the transcriptional activator GCN4 in 
both S. cerevisiae and C. albicans (Hinnebusch, 2005; Natarajan et al., 2001; Tripathi et al., 2002).

Pathway and signature analysis can sometimes detect more subtle differences in comparison 
to univariate DEG analysis, especially in cases such as ours where there are few cells available for 
the analysis. Figure 3C (column labeled ‘others’) summarizes our observations from this analysis, 
which identifies an enrichment of GCN4 target genes encoding amino acid biosynthetic enzymes, 
suggesting that comet cells are undergoing amino acid starvation. There are at least three reasons 
why C. albicans cells may be depleted of amino acids: (i) exposure of C. albicans to FCZ reduces 
the pool size of amino acid biosynthesis intermediates (Katragkou et al., 2016), (ii) the cells are 
exporting amino acids, which is consistent with the observed upregulation of efflux signatures in 
Figure 3C or (iii) the amino acid starvation response could be related to changes in the translational 
machinery when cells experience extreme stress. This is consistent with the observation of low 
expression of rRNAs in Figure 3C.

GO analysis of the DEGs also revealed an enrichment of genes involved in DNA replication 
regulation, actin cytoskeleton, plasma membrane organization, and mitotic ring assembly, all 
highly expressed in comet clusters (NHP6A, HHF22, HHF1, SBA1, NCE102, KIN2, RVS167, CDC12) 
(Appendix 2—figure 2—source data 1; 2; Appendix 2—figure 2). This is in line with the observation 
that FCZ affects bud formation and is associated with DNA replication or spindle pole body 
duplication (Harrison et al., 2014). In our prior research, we discovered that within 4–8 hr of drug 
exposure (at concentrations greater than the MIC), approximately 20% of mother- daughter cell pairs 
produced a single granddaughter cell, resulting in three cells (Harrison et al., 2014). Despite this, 
the mother and daughter nuclei continued to divide, generating four daughter nuclei. This process 
led to one cell containing twice the normal DNA content, and the resulting 4N cells frequently 
underwent abnormal divisions, giving rise to aneuploid offspring (Harrison et al., 2014). Using the 

https://doi.org/10.7554/eLife.81406
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sc data, we searched for aneuploidy evidence by calculating the percentage of reads assigned to 
genes in each chromosome. We found that cells in cluster 16 have a significantly higher proportion 
of reads assigned to genes in chromosome 2, which could indicate trisomy or local chromosomal 
amplification (Appendix 2—figure 2).

DEGs: each comet versus each main cluster. Although the number of cells per comet cluster is 
small (from 7 to 126 cells), individual molecular marker genes could be identified in some comets. 
Some of these markers have been reported previously to be involved in FCZ tolerance or resistance 
(Appendix 2—figure supplement 2B; Materials and methods, ‘DGE analysis’; top 5 with Bayes 
factor >3 and proportion of non- zero value >0.2). These included cell wall organization and adhesion 
(ADA2, TPK2, LMO1, KRE9, RDH54, DFI1) and chromosomal and cytoplasmic division (AXL2, HOS3, 
RDH54, RFA2 RIM15, NPL4, CDC5 BUB2).

In summary, although the comets each contain a small number of cells make it difficult to assess 
any statements with statistical rigor, comets generally overexpress GCN4 and related genes encoding 
amino acid biosynthetic enzymes, suggesting the cells are starved for amino acids. Pathway analysis 
is consistent with various known reasons for amino acid starvation. Specifically, efflux pumps are 
concomitantly overexpressed and translational machinery is underexpressed. Comets also consistently 
overexpress DNA replication regulation, actin cytoskeleton, plasma membrane organization, and 
mitotic ring assembly processes. We have previously established that FCZ exposure is associated 
with DNA replication or spindle pole body duplication, leading to aneuploidy. At least one comet 
has strong evidence of an aneuploidy along chromosome 2.

Subinhibitory dose of CSP triggers the Rd response
CSP, a first- line clinical treatment echinocandin, acts by inhibiting β-1,3 glucan synthesis and disrupting 
the fungal cell wall (McCormack and Perry, 2005). Although it is effective against most Candida 
species, a known mechanism of echinocandin resistance involves point mutations in ‘hot spot’ 
regions of FS- encoded subunits of a glucan synthase (Perlin, 2015; Pristov and Ghannoum, 2019). 
Tolerance to CSP increases with larger amounts of cell wall chitin, potentially due to aneuploidy and 
chromosome 5 rearrangement (Yang et al., 2017). Even though fungicidal CSP and fungistatic FCZ 
have different modes of action, they share similar tolerance mechanisms associated with Hsp90, 
the calcineurin pathway (Singh et al., 2009) and the pH- responsive RIM pathway (Garnaud et al., 
2018). To treat a C. albicans population, we used a subinhibitory concentration of CSP, well below 
its MIC50 (1 ng/ml), as higher doses led to significant cell aggregation, rendering the cells unsuitable 
for sc profiling.

On day 2, the majority of cells were found in cluster 1- darkpink, where Rd FCZ cells also reside 
(86% of all CSP, Figure 3A and B; Appendix 2—figure 1). We examined the differences between 
CSP and FCZ cells in the Rd state and identified only one significantly differentially expressed gene 
(FDR <0.1), suggesting a highly similar Rd response for both antifungal treatments, at least at the 
selected dosage levels and day 2 time point. Unlike FCZ, no bifurcation was observed for CSP at 
day 2 (i.e., we did not observe any Sd cells), which could be partially due to our choice of a low 
dosage level, a factor previously shown to be crucial in determining the cellular response to CSP in 
C. albicans (Enjalbert et al., 2006; Enjalbert et al., 2003). There was only minor heterogeneity in 
the cellular response to CSP (Figure 3B).

Higher concentrations of CSP and longer time courses might induce a bifurcation similar to FCZ, 
leading to the emergence of Sd cells characterized by high expression of heat- shock protein coding 
genes. Since HSP70 was identified as a strong marker of the Sd response, we analyzed microscopy 
images of our GFP- tagged HSP70 cells exposed to CSP or FCZ for 2 and 3 days. Although a 
significant fraction of FCZ- treated cells highly expressed HSP70 at days 2 and 3, confirming the 
presence of Sd cells, no similar trend was observed in CSP- treated cells at either time point 
(Appendix 2—figure 1).

In conclusion, cells treated with CSP closely co- clustered with FCZ Rd response cells, but there 
was no evidence of CSP cells in the Sd response at day 3. The similarity in the early response is 
intriguing, considering that CSP and FCZ have distinct mechanisms of action (i.e., disrupting cell 
wall biosynthesis versus disrupting ergosterol biosynthesis). It will be interesting to determine the 
universality of the Rd response in future antifungal profiling efforts and the potential transition to the 
proliferative tolerant Sd state.

https://doi.org/10.7554/eLife.81406
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RAPA survivors exhibit the highest expression of hyperosmotic stress and 
lowest expression of RPs
The TOR (target of RAPA) pathway controls many processes including protein translation, autophagy, 
apoptosis, and cell growth in response to nutrient availability (Bastidas et al., 2009; Cruz et al., 
2001; Heitman et al., 1991; Schmelzle and Hall, 2000). Although C. albicans is sensitive to RAPA 
(Baker et al., 1978), it has weak antifungal properties when used alone (Baker et al., 1978; Tong 
et  al., 2021). However, RAPA treatment in combination with azoles, including FCZ, exhibits a 
synergistic effect (Tong et al., 2021), eliminating drug tolerance (Rosenberg et al., 2018). We sc- 
profiled C. albicans populations exposed to a concentration of RAPA that does not visibly impact 
growth (0.5 ng/ml) but is known to inhibit FCZ tolerance (Rosenberg et al., 2018).

Cells treated with RAPA primarily localize to cluster 2- pink and, to a lesser extent, cluster 
4- turquoise in the Sd state (Figure 3A and B Appendix 2—figure 1). We previously noted that Sd FCZ 
cells exhibit high activation of heat- shock stress response genes. A similar trend is observed in RAPA- 
treated cells, but they mostly display a pronounced hyperosmotic stress response (Appendix 2—
figure 1 ). In fact, this elevated hyperosmotic stress response is present in all RAPA cells, regardless 
of their cluster classification (Appendix  2—figure 1 , light blue curves). Specifically, RAPA cells 
express high levels of the sodium pump ENA2 and the glycerol- 3- phosphate dehydrogenase GPD2 
(Appendix 2—figure 1 ). Both genes are orthologs of hyperosmotic stress- responsive genes in S. 
cerevisiae and are induced in C. albicans in response to hyperosmotic stress (Enjalbert et al., 2003), 
indicating that hyperosmotic stress gene activation is unique to RAPA treatment.

Although RAPA- enriched regions initially seem to have moderate to low RP levels (Figure 3F and 
J), closer examination reveals that RAPA cells have the lowest RP expression compared to cells from 
any other condition (Appendix 2—figure 1). This is expected, as RAPA’s inhibition of TOR signaling 
is known to decrease RP gene expression (Powers and Walter, 1999). Consequently, no RAPA 
cells are found in the Rd state, which is characterized by high RP. When RAPA and FCZ are used 
together, drug tolerance is eliminated, but drug resistance remains unaffected. Our findings suggest 
that this might happen due to the inhibition of the Rd response, preventing cells from transitioning 
to the tolerant Sd state. Interestingly, RAPA specifically induces the expression of hyperosmotic 
stress- related genes. Past research has shown that the Tor1 pathway regulates phase separation 
and the biophysical properties of the cytoplasm by modulating macromolecular crowding (Delarue 
et al., 2018). The hyperosmotic stress response to RAPA exposure could be a result of disrupted 
cytoplasmic biophysical properties, leading to altered osmotic balance in cells.

https://doi.org/10.7554/eLife.81406
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Appendix 2—figure 1. Single cell analysies of additional anti- fungal drugs. (A, B, D–F) Uniform Manifold 
Approximation and Projection (UMAP) embedding from Figure 3A. Color bar depicts: (A) density of untreated (UT) 
cells, (B) expression score for the glycolysis signature. (C) Empirical cumulative distribution (ECDF) of the glycolysis 
signature scores for each cell in the different conditions (drug_day, color); Kolmogorov- Smirnoff test, p < 0.001. (D) 
Density of caspofungin (CSP) cells at day 2. (E) Histograms depicting expression of heat- shock protein 70 (HSP70) 
in (i) CSP or (ii) fluconazole (FCZ)- treated cells after 2 days (green) 29 and 3 days (blue) exposure. (F) Density of 
rapamycin (RAPA) cells after 2 days of exposure. Cells with high expression of HSP70 fall to the right of the dashed 
red line. There is a statistically significant depletion of cells highly expressing HSP70 (a marker of Sd; KM test, p 
< 0.01). (G) Score for the hyperosmotic stress signature mapped onto the UMAP embedding from Figure 3A. (H) 
ECDF of the hyperosmotic stress (hyperosmosticS) signature score for each cell in clusters 2 (top) and 4 (bottom) 
for the different conditions (drug_day, color). (I) The heatmap depicts genes (rows) in the hyperosmotic stress 
Appendix 2—figure 1 continued on next page
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signature with significant variability and consistent expression across cells (columns). We used MAGIC to impute 
expression levels (z- score, color bar). Cells are linearly ordered by the overall magnitude of gene expression 
(mean gene rank). ‘Clusters’ (top) indicates the Leiden cluster of origin for each cell and ‘drug_day’ indicates the 
condition for each cell. (J) ECDF of signature scores for each cell under the different conditions (color) (ks- test, 
Kolmogorov- Smirnoff test).

Appendix 2—figure 1 continued
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Appendix 2—figure 2. Differentially expressed genes and pathways associated with comets. (A) Genes 
overexpressed in the collection of 19 comets compared to other cells in main clusters (Bayes factor > 2.5 and 
proportion of non- zero value > 0.2). Color bar indicates the mean expression across the cells in each cluster. The 
size of the dot indicates the proportion of cells which express that gene within each cluster. (B) Similar plot than (A) 
for genes differentially expressed in each comet cluster compared to others (Bayes factor > 3 and proportion of 
Appendix 2—figure 2 continued on next page

https://doi.org/10.7554/eLife.81406


 Research article      Computational and Systems Biology | Microbiology and Infectious Disease

Dumeaux et al. eLife 2023;12:e81406. DOI: https://doi.org/10.7554/eLife.81406  35 of 35

non- zero value > 0.2). (C) Gene ontology (GO) enrichment for genes identified as differentially expressed in comets 
compared to other clusters using pseudo- bulk differential expression analysis (60 genes; FDR < 0.1 ; Appendix 2—
figure 2—source data 1, 2).The size of the dot is proportional to the number of genes in the list which overlap with 
the corresponding GO term. (D) Percent of reads assigned to genes in chromosome 2 for each cell classified in the 
24 distinct clusters.

The online version of this article includes the following source data for appendix 2—figure 2:

Appendix 2—figure 2—source data 1. Differentially expressed genes in cells classified in the comet clusters 
(pseudo- bulk samples) compared to other fluconazole (FCZ)- treated cells (pseudo- bulk samples).

Appendix 2—figure 2—source data 2. Gene ontology terms enriched in genes differentially expressed between 
comets (pseudo- bulk) and other fluconazole (FCZ)- treated cells (pseudo- bulk) listed in Figure 3—table supplement 
1A.

Appendix 2—figure 2 continued
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