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Abstract
Background  Formalin-fixed paraffin embedded (FFPE) samples suffer from the degradation of nucleic acids, a 
problem that becomes particularly acute with samples stored for extended periods. It remains challenging to 
profile FFPE using high-throughput sequencing technologies including RNA-sequencing, and the resulting FFPE 
RNA-seq (fRNA-seq) data has a high rate of transcript dropout, a property shared with single cell RNA-seq. Transcript 
counts also have high variance and are prone to extreme values, together making downstream analyses extremely 
challenging.

Methods  We introduce the PaRaffin Embedded Formalin-FixEd Cleaning Tool (PREFFECT), a probabilistic framework 
for the analysis of fRNA-seq data. PREFFECT uses generative models to fit distributions to observed expression 
counts while adjusting for technical and biological variables. The framework can exploit multiple expression profiles 
generated from matched tissues for a single sample (e.g., a tumor and morphologically normal tissue) in order to 
stabilize profiles and impute missing counts. PREFFECT can also leverage sample-sample adjacency networks that 
assist graph attention mechanisms to identify the most informative correlations in the data.

Results  We evaluated the distribution of transcript counts across a compendium of fRNA-seq datasets, finding the 
negative binomial distribution best fits the data with little evidence supporting zero-inflated extensions. We use this 
knowledge in the design of PREFFECT. We show that PREFFECT can accurately impute missing values from fRNAseq 
count matrices and adjust for batch effects. The inclusion of sample-sample adjacency networks and multiple tissues 
were shown to enhance sample clustering.

Conclusions  The vast majority of studies to date contain at most a few hundred profiles, making it challenging to 
correctly infer good statistical fits for each transcript especially in complex cohorts, given the noisy, incomplete and 
heterogeneous nature of the data. The integrative and generative approach of PREFFECT provides better and more 
specific model fits than generic bulk RNA-seq tools, especially when more advanced PREFFECT models provide 
matched profiles are included in the analysis. The transformed data can be directly used with many well-established 
tools for downstream analysis tasks, empowering its use in clinical biomarker studies and diagnostics.
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Background
Formalin-Fixed Paraffin Embedded (FFPE) material 
has long been used in histopathology to store samples 
in a manner which preserves cellular structure and tis-
sue morphology, and has been exploited in diagnostic 
pathology since at least 1991 [1]. Its ease of storage and 
cost-effectiveness has enabled the pathology of health 
and disease to be cataloged with over one billion archi-
val samples available worldwide [2–4]. FFPE constitutes 
a significant resource for retrospective clinical research 
and prospective studies, potentially eliminating the need 
for the collection of fresh frozen specimens. However, 
since it remains challenging to profile and analyze FFPE 
samples with modern high-throughput technologies, 
this resource has been under-utilized. Our goal here is 
to facilitate the analysis of FFPE-based RNA-sequencing 
studies (fRNA-seq).

It is well-established that FFPE-harvested material can 
be of sufficient size and quality for use in modern -omic 
projects [5–9] including RNA-seq [10–17]. Neverthe-
less, it is also well-recognized that molecular profiles of 
FFPE samples generated by -omic technologies including 
next-generation sequencing contain significant error and 
bias, likely in large part due to degradation and modifi-
cation introduced along each step of FFPE handling. For 
example, during fixation, formalin causes the formation 
of methylene bridges which alters the structure of nucleic 
acids (and proteins) [18], and results in fragmentation 
and mutations [19]. The subsequent dehydration pro-
cess causes denaturation of nucleic acids and proteins, 
which may reduce RNA stability after renaturation. Heat, 
modulation of pH levels and endogenous enzymes (e.g., 
nucleases) during de-crosslinking can cause further 
nucleic acid damage particularly to labile RNA [20]. The 
rate of degradation of nucleic acids is dependent on time, 
the fixation process used, and storage conditions [21–23]. 
Extraction can cause damage in several additional ways 
[16, 24–26].

Several studies comparing profiles of fresh frozen sam-
ples and their matched FFPE embeddings confirm that 
the damaging agents together induce significant degen-
eration [27]. For example, Jacobsen and colleagues [28] 
observed that RNA extracted from FFPE tissue had a 
median RNA integrity number (a quality measure based 
on the ratio of ribosomal RNA peaks and the overall RNA 
degradation pattern) of 2.5 and a DV200 (the percentage 
of RNA fragments that are greater than 200 nucleotides 
in length) of 48% compared to RNA extracted from fresh 
frozen tissue with a median integrity number of 8.1 and 
DV200 of 97%, representing nearly a two-fold degrada-
tion. In general, transcript counts are generally reduced 

in fRNA-seq profiles compared to matched fresh fro-
zen RNA-seq profiles [5, 9]. Missing RNA species result 
in what is referred to as dropout or zero counts. Several 
efforts have observed an elevation in the number of zero 
counts in fRNA-seq profiles [9, 29]. Fragmentation of 
transcripts can lead to extremely high transcript counts 
due to several different mechanisms [30], and muta-
tions can reduce the rate of successful mapping of reads 
to genomic loci [5]. Although there have been advance-
ments in the protocols for nucleic acid extraction and 
preparation [17, 31], these problems persist in even the 
most recent datasets.

Given the degraded nature of FFPE samples, it is 
important to understand the distributional properties 
of fRNA-seq data, and to use this information to build 
fRNA-seq-specific normalizations, transformations and 
de-noising methods. To date, such efforts lag behind 
other types of transcriptome profiling, including single 
cell RNA-seq (scRNA-seq) and bulk RNA-seq. The vast 
majority of fRNA-seq datasets re-purpose bulk RNA-seq 
analysis pipelines, although our effort here shows that 
this practice may not be optimal. The only fRNA-specific 
framework is MIXnorm from Yin and colleagues [32, 33] 
which normalizes transcript counts using a special mix-
ture model.

Our effort starts by characterizing the distributional 
qualities of the fRNA-seq data. In particular, we provide 
evidence that it is well-modeled by the negative bino-
mial (NB) distribution, a property shared with bulk and 
scRNA-seq data and for which a considerable number 
of downstream applications (e.g. differential expression) 
are built upon. We also identify aspects of fRNA-seq that 
are distinct from sc- or bulk RNA-seq. One obvious dif-
ference is that FFPE studies are much smaller than most 
scRNA-seq studies: the estimated 1500 fRNA-seq datas-
ets in international repositories (e.g., ENA, SRA, dbGaP) 
typically contain on the order of 102 samples, while most 
scRNA-seq studies contain on the order of 104 − 106 
samples.

 Using the inferred distributional information, we 
introduce the PaRaffin Embedded Formalin-FixEd Clean-
ing Tool (PREFFECT), a probabilistic model for fRNA-
seq data. PREFFECT uses a series of generative models 
to re-express observed transcript counts using either an 
NB distribution or a zero-inflated extension alongside 
metadata corresponding to known technical and bio-
logical effects in the data. Similar approaches have been 
explored in the context of scRNA-seq data analysis [17, 
34–51]. PREFFECT contains a series of conditional varia-
tional autoencoders (cVAEs) which allow multiple tis-
sues to be considered simultaneously in addition to graph 
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attention mechanisms [47, 52] which assist by highlight-
ing information in matched samples which may assist 
during model training, an important capacity when high 
dropout rates are observed. This transformed data can be 
directly used for differential expression analyses, survival 
analyses and other common downstream tasks. Using 
publicly available datasets, we show how the adjusted 
count data from PREFFECT improves sample clustering 
and classification.

Methods
Statistical analyses were performed using Python ver-
sion 3.9 [53] and R version 4.4 [54]. Hierarchical cluster-
ing was performed using the seaborn clustermap 
function with average distance linkage and Euclidean dis-
tance. UMAP was performed using the umap-learn [55] 
package in SCANPY [56] (min_dist = 0.3). We use the 
mean and dispersion parameterization of the negative 
binomial (NB) distribution for convenience, and π is used 
to refer to the drop-out probability in zero-inflated ver-
sions of distributions. The k-BET measure of cluster mix-
ing was computed using the Python package scib and 
the adjusted rand index (ARI) of cluster purity was com-
puted using scikit-learn.

A compendium of fRNA-seq datasets
We collected a large number of fRNA-seq datasets from 
public repositories in order to characterize their statisti-
cal properties and then later to test the capacity of PREF-
FECT. Datasets were included only when raw count 
information was available. All datasets with GSE identi-
fiers were obtained from the Gene Expression Omnibus 
https:/​/www.nc​bi.nlm.​nih.​gov/geo/. The ​M​e​t​
a​s​t​a​t​i​c Breast Cancer (TMBC) dataset [57] was available 
through cBioPortal [58]. The Sunnybrook cohorts are not 
currently publicly available but are pending publication. 
We collected clinicopathological and technical variables 
(such as batch identification number) whenever pos-
sible. The datasets vary across tissue, cell type, age of the 
cohort and profiling technique (Table S2). Transcripts 
with zero counts across all samples were removed. Since 
the PAM50 subtype for samples was not provided in 
most of the breast cancer FFPE datasets, we estimated it 
using the PAM50 classifier [59].

Characterizing the statistical properties of fRNA-seq 
datasets
We require an unbiased approach to determine which 
statistical distribution best fits transcripts across the 
fRNA-seq compendium. We used only a “mild” trimmed 
mean approach to mitigate the influence of outliers (set 
to 1%), although this was not used when comparing the 
NB versus zero-inflated NB (ZINB) distributions, as 
increasing the trimmed mean percentage increases the 

number of zeros that are removed and therefore could 
result in bias against zero-inflated distributions.

Expression data was fit to six distributions using two 
different methods. The Akaike information criterion 
(AIC) measures the goodness of fit as 2k − 2ln(L) where 
k is the number of parameters of the distribution and L 
is the likelihood of the model given the observed data. 
All non-zero inflated distributions were fitted using the 
StatsModels package [60]. For zero-inflated models, 
the AIC and distributional parameters were estimated 
using the minimize function from scipy [61] to opti-
mize the negative log-likelihood; this was repeated over 
a range of initial dropout values π to minimize the nega-
tive log-likelihood. The D statistic of the Kolmogorov–
Smirnov (KS) test was computed between the empirical 
cumulative distribution function for each transcript in 
every dataset and the cumulative distribution function 
of each reference distribution. The KS test was used to 
ensure that differences in the number of parameters 
between the six distributions did not unduly affect the 
results. Here again a 1% trimmed mean was applied to 
eliminate extreme outliers.

Generation of synthetic datasets
Synthetic datasets provide a convenient means to inves-
tigate technical correctness, model limits and param-
eter optimization for the PREFFECT generative models. 
Count matrices were generated across a range of mean and 
dispersion values for the NB distribution. For each pair 
(µ, θ) ∈ {50, 100, 500, 1000} × {0.01, 0.1, 1, 2, 5, 10, 100}, a count 
matrix was formed across the N = 1000 transcripts and 
M = 1000 samples using variates from NB(µ, θ).

To investigate the role of the dropout rate π in param-
eter estimation, we constructed a synthetic dataset where 
the count Rg  for each transcript g in each sample is 
formed as follows:

	
µg ∼ log N (loc = 100, scale = 0.1),
Rg ∼ NB(µg, θ = 1).

In several places, we require count data gener-
ated by a ZINB process. Toward this end, each tran-
script in the dataset was assigned a dropout value 
π ∼ U(0 . . 0.8). Then π samples across the transcript 
were randomly selected and set to 0.

Creation of pseudo-synthetic samples
Although contemporary fRNA-seq datasets are often 
small (< 500 samples), they are of sufficient size to infer 
important distributional properties and parameters. For 
each target transcript, we use its observed frequency in 
the original dataset and a chosen library size to form syn-
thetic counts following the standard way to generate NB 
variates (e.g. Fig.  3C). This method allows us to better 
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ensure that samples have similar library sizes. We can use 
these to generate as many pseudo-synthetic samples as we 
require to train our models. When required, patient sub-
type was estimated in the pseudo-synthetic count data 
using the PAM50 classifier [59] after 1% mean trimming 
and a variance stabilizing transformation to the counts. 
A sample-sample adjacency matrix was constructed by 
placing an edge between two samples of the same sub-
type. To evaluate the contribution of the adjacency 
matrix to imputation, we constructed a null adjacency 
matrix by randomly permuting the edges in the matrix.

Fundamentals of all PREFFECT models
There are three PREFFECT models: simple, single and 
full (Table S1B). All models require an unadjusted count 
matrix X ∈ ZM×N

>0  for the target tissue, where M is the 
number of samples and N is the number of transcripts. 
All models can accommodate metadata (e.g., batch 
number, DV200, percent duplicates), and patient clini-
copathological variables (e.g., grade, stage of a tumor). 
PREFFECT uses these variables to adjust the count 
data and for conditional inference [62] to adjust the raw 
data. Missing transcript count data is assumed to be a 
zero count. All other conditional variables must be fully 
specified.

The simple PREFFECT model
A more technical exposition of the model is given in the 
Supplementary Information and depicted in Fig. S3A, 
B. The encoder produces an estimation qΦ of the true 
posterior pΘ, where Φ and Θ are the sets of all relevant 
underlying parameters for q (i.e., weights in the neural 
network) and p (i.e., parameters of the underlying true 
distribution). qΦ consists of several conditional VAEs 
including an (optional) encoder qL

Φ, for the observed 
(log-)library sizes of the samples allowing the library size 
to vary during model fitting.

The first decoder maps the latent spaces to fitted count 
matrices under an NB or ZINB distribution via three 
neural networks f1, f2, f3 (Fig.  3C). Neural network f1 
estimates the fraction of reads for each transcript in each 
sample cm,g  along with an inverse dispersion value θ. 
Neural network f2 estimates the library size lm of each 
sample m. θ and θ/lm · cm,g  serve as the shape and rate 
parameter, respectively, to a Gamma distribution to form 
counts ωm,g  which serves as the rate parameter to a Pois-
son distribution and together define a NB distribution 
with mean µm,g  and dispersion θ (see the Supplemen-
tary Information for a more detailed explanation and also 
[45], Supplementary Note 3). If the user prefers to work 
with a zero-inflated model, a third neural network f3 
estimates the logit of the dropout rate πm,g  for each tran-
script g in each sample m. πm,g  is used as the parameter 

of a Bernoulli distribution that models whether a tran-
script is dropped out (therefore a zero). When combined 
with the NB distribution of cmg , this results in a ZINB 
distribution.

Loss is computed as a (possibly weighted) combina-
tion of the Kullback-Leibler (KL) divergence and recon-
struction error (log-likelihood of the NB or ZINB as 
appropriate). A more detailed description of the neural 
network with details on dropout, choice of activation lay-
ers, injection of correction variables, and optimization is 
described in the Supplementary Information.

Imputation of missing transcript counts
Several experiments were carried out to test the capac-
ity of PREFFECT to self-learn or impute missing values 
using synthetic or pseudo-synthetic datasets. The col-
lection D of positions (i, j) in the count matrix that were 
replaced by a zero to simulate dropout was recorded. 
The median relative error was computed between the 
true (hidden) value and the imputed value across all such 
locations (i, j):

	
MRE(X, X̂) = median(i,j)∈D

|X̂i,j − Xi,j |
Xi,j

,

where X̂i,j  is the estimated value for this count and Xi,j  
is the observed count.

Experiments to measure batch corrections
Several experiments were carried out to investigate the 
capacity of PREFFECT to adjust for batch effects. In 
the first experiment, we created a synthetic dataset with 
M = 1000 samples and N = 900 transcripts and simu-
lated a simple batch effect as follows. First, a sample s was 
assigned to batch 0 with probability b. Otherwise, it was 
assigned to batch 1. Let batch(s) denote its batch. Sec-
ond, a frequency vector ω for the transcripts was gener-
ated using the stick-breaking algorithm [63]; ω was used 
to generate variates for all samples regardless of batch, 
and a single suitably large library size L was chosen for 
all samples. Transcript counts Cs,g  for sample s and tran-
script g were generated according to a hierarchical model 
as follows:

	
Cs,g ∼ NB(N (µg, σ2), θ) + batch(s) · Bernoulli(p) · N (µB , σ2

B),

where µg = L · ωg , σ = 1, p corresponds to the probabil-
ity a transcript is subject to the batch effect, and µB  and 
σ2

B  are the parameters for a normal distribution describ-
ing the batch shift. Note that the final library sizes (from 
summing over all transcripts per sample) will tend to be 
larger for batch 1 samples.
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Three distinct experiments were conducted as follows:
Experiment 1. Library size L = 106; B = 100; 

σ2
B = 1; p = 1 implying all transcripts in batch 1 received 

the adjustment. Samples were assigned to the two 
batches with equal probability.

Experiment 2. As for Experiment 1 but the probability 
p that an individual transcript in batch 1 would be sub-
jected to the batch effect varied from 0.5 to 1.

Experiment 3. The goal of this experiment was to test 
whether important biological differences between the 
samples (here represented by samples belonging to two 
distinct subtypes) were not lost after adjusting for the 
batch effect. Similar to Experiment 2, but two distinct 
frequency vectors ωα and ωβ  were randomly gener-
ated via the stick-breaking algorithm representing two 
subtypes α and β respectively. A sample was randomly 
assigned to either subtype α or β with equal probability. 
Therefore, a transcript g in sample s, µg  is equal to either 
L · ωα or L · ωβ  depending on whether s was assigned to 
subtype α or β.

The Jensen–Shannon divergence, a symmetrized and 
smoothed version of the KL divergence, is used to mea-
sure the distance between frequency distributions the 
generative transcript frequencies ω and the estimated 
transcript frequencies ω̂. The JSD is defined as follows:

	
JSD(ω || ω̂) = 1

2
KL(ω || M) + 1

2
KL(ω̂ || M),

where M = 1
2 (ω + ω̂) is the average, mixture distribution 

and KL(·, ·) is the KL divergence. To measure the change 
in JSD after adjusting for the batch, we compute

	 ∆ JSD(ω, ω̂, ω̄) = JSD(ω, ω̄) − JSD(ω, ω̂),

where ω̄ is the adjustment (via the latent representation) 
of ω̂.

Using the estimated transcript frequency vectors ω, the 
samples were mapped to two dimensions for visualiza-
tion using UMAP.

Single-tissue PREFFECT model: sample-sample 
relationships.
Given the challenges of fRNA-seq data, we sought to 
incorporate additional information that could assist with 
the de-noising and imputation of count data. Towards 
this end, the single tissue generative model incorporates 
a sample-sample adjacency matrix A : M × M  (Fig. 3A, 
purple). Two samples are adjacent if and only if they are 
deemed sufficiently similar. Often similarity is defined by 
Pearson correlation distance or another metric applied 
to a subset of transcripts, but other techniques could 
be used either directly with the count matrix X or some 
other independent datasets (not necessarily fRNA-seq), 

opening avenues for integrating multi-omics data, clini-
cal information or other modalities. In the experiments 
related to clustering with the single model, edges were 
included in the graph if and only if the two samples were 
of the same PAM50 subtype.

In the single tissue generative model, the encoder pro-
cesses the count matrix X, the adjacency matrix A along-
side associated metadata K through a neural network 
to project the data into a latent space ZA. The top layer 
of this neural network uses a graph attention network 
(GAT) [47, 52], which takes as input transcript counts 
for each sample in addition to the sample-sample adja-
cency list (Fig. S3D and Supplementary Information). 
The attention mechanism helps the model focus on the 
most informative dependencies while minimizing the 
effect of others. GAT mechanisms also facilitate hierar-
chical feature learning by aggregating information over 
multiple layers and at different levels of granularity. As 
before, the (log) library sizes (log  L) can be allowed to 
vary during training. The encoder produces an estima-
tion qΦ(ZA, Zl|X, A, log L, K) of the true posterior dis-
tribution pΘ, where Φ consists of all parameters of the 
neural network and Θ represents the true parameters 
underlying the data. Linear layers are applied after the 
GAT to form the final latent encoding ZA of the graph 
and count matrix. The decoder reconstructs an estimate 
of the count matrix X and the adjacency matrix A (Fig. 
S3E, pink).

Investigating the contribution of the adjacency matrices
We sought to demonstrate that the inclusion of sample-
sample adjacencies in the single tissue model increased 
performance over the simple model. Our explorations 
related to imputation, clustering and network reconstruc-
tion used the breast cancer datasets from the compen-
dium. In particular, we needed to generate a (large) set 
of pseudo-synthetic samples using a transcript frequency 
vector ωs specific to each subtype s. We began by prepar-
ing each dataset as described above and determined the 
PAM50 subtype of each sample. Next, we transformed 
the raw input count matrix X to a matrix X ′′ where

	
X ′′

i,j = Xi,j∑
j′ Xi,j′

,

so that the resulting rows (samples) of X ′′ correspond 
to the frequency vector for all transcripts. Now for each 
subtype s, we compute a vector ωs which is the average 
frequency of each transcript in all samples of the subtype 
s. ωs is then used to generate sample-specific variations 
across each of the transcripts. For each subtype s, a cho-
sen library size L, and transcript specific dispersion θ, 
we create Ns pseudo-synthetic samples where each such 
sample has a transcript count vector formed as follows:
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µg = L · ωs,
ωi,g ∼ Γ(shape = θg, rate = θg/µg),
Xi,g ∼ Poisson(ωi,g),

The relationship between µg , ωi,g , and Xi,g  is a standard 
way to derive variates according to a negative binomial 
distribution. Here Xi,g , the final count for transcript g 
in sample i, is distributed according to a NB distribution 
with parameters mean µg  and dispersion θg . An adja-
cency matrix was formed as described above with edges 
placed between two samples if and only if they are of the 
same subtype.

Full PREFFECT model: integrating multiple matched tissues
The full model in PREFFECT generalizes the single 
model by accepting a set of tissue-specific count matrices 
X(1), X(2), . . . X(T ) ∈ ZM×N

>0  along with corresponding 
sample-sample adjacency networks A(1), A(2), . . . A(T ) 
for the T  matched tissues profiled over a common set of 
N transcripts (Figs. 3D, S3F). The learning procedure fits 
the NB or ZINB models to each tissue via the GAT lay-
ers and adjacency matrices as in the single layer model, 
but additional layers in the network combine the T  latent 
spaces into a single joint latent space. In this way, the 
related tissue types influence the fit and therefore the 
adjusted transcript count data.

Investigating performance of the full model
To investigate the performance and behavior of the 
PREFFECT full model, we require at least two matched 
transcript count matrices. For the purposes of this exper-
iment, we turned to a pseudo-synthetic approach that 
exploits an existing dataset (Sunnybrook) in the fRNA-
seq compendium with both tumor (first matrix) and 
matched stromal (second matrix) count data. In both 
cases, 100 transcripts across 1000 samples were gener-
ated using the parameters learnt from the real data for 
each tissue. Here sample i in the primary tumor matrix is 
matched with sample i in the stromal matrix.

For the primary tumor count matrix, we assigned 250 
(of 1000) samples to each of four breast cancer sub-
types. The first 50 transcripts correspond to PAM50 
genes. NB counts were generated from parameters esti-
mated for each subtype from breast cancer datasets in 
the fRNA-seq compendium. The second 50 transcripts 
are non-informative; the counts are simply variates from 
NB(100, 1) and so they should not impact clustering of 
the tumor samples This gives us a set of M = 1000 sam-
ples each assigned a tumor subtype across the 50 PAM50 
transcripts and 50 non-informative transcripts.

To simulate stromal subtyping schemes, we partitioned 
the 1000 samples into 4 stromal subtypes (labelled α − δ) 
as follows:

 	• if the sample was assigned the basal subtype in the 
tumor samples, it randomly receives either stromal 
subtype α or β with equal probability;

 	• tumor HER2-enriched samples were assigned 
stromal subtype γ; and

 	• tumor luminal A and B samples were both assigned 
stromal subtypes δ.

In this (artificial) manner used for exemplary purposes, 
the stromal subtypes provide greater refinement of the 
tumor subtypes in one case (basal subtype), and the 
tumor subtypes provide greater refinement of the stromal 
subtype in one case (the δ subtype is fractured into lumi-
nal A and B subtypes).

A distinct transcript frequency vector was generated 
via a stick-breaking algorithm for each of the 4 stromal 
subtypes as described above for our investigations of 
batch corrections. The stromal count matrix consists of 
the 50 PAM50 transcripts and 50 stroma-specific tran-
scripts. For the stroma, the PAM50 transcript counts are 
just random variates from NB(100, 1) so they are unin-
formative and should not affect clustering of the stroma 
samplings. The 50 stroma-specific transcript counts are 
generated using the corresponding frequency vectors 
ωα, ωβ , ωγ , ωδ .

Training and hyper-parameter tuning
During the design and testing of PREFFECT, a large 
hyper-parameter search was conducted across the fRNA-
seq compendium and pseudo-synthetic data. Our goal 
was to identify good default values for a wide range of 
parameters both with respect to specific values (e.g. 
default latent dimensionality) and architecture (e.g. type 
of activation function, number of linear layers). The ∼ 25 
parameters are detailed in Table S3 along with the default 
value. All of these parameters can be changed by the user, 
although it is often the case that only a few such param-
eters must be explored when fitting to a new dataset, 
primarily learning rate, epochs, batch size, latent dimen-
sion r, and weight of the KL divergence score for expres-
sion. PREFFECT expects distinct training, validation 
and test sets for learning a model with a recommended 
size ratio of 6:2:2. Only the training and validation data-
sets are used during model learning. The Supplementary 
Information provides a detailed description of the model 
and loss functions. The online software has a series of 
vignettes that aid the end-user with training models for 
new datasets; a vignette is depicted in Fig. S4.

Results
Table S1 describes the path of our analyses beginning 
with the characterization of fRNA-seq data, through 
the construction of a series of PREFFECT models with 
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increasing complexity, to the validation and exploration 
of PREFFECT on contemporary fRNA-seq datasets.

FFPE-derived RNA-seq expression is well-modeled by the 
negative binomial distribution
To characterize the distribution of transcript counts 
obtained from whole transcriptome fRNA-seq profil-
ing, a compendium was constructed by selecting publicly 
available datasets which contain a considerable num-
ber of profiles (at least 20 samples; median=93) and for 
which the corresponding raw, non-normalized count 
data is available. The N = 13 sets of fRNA-seq samples 
vary in terms of tissue types, cell types, disease (or nor-
mal samples), age of samples, and technical variables 
(Table S2). The transcripts with the highest counts tend 
to be the same as those observed in bulk and scRNA-seq 
studies including MALAT1, NEAT1, XIST [64] and oth-
ers listed in Fig.  1A. These extreme counts in the right 
tail induce a very high standard deviation with respect to 
the average count per transcript (Fig.  1B). For example, 

the mean count for MALAT1 in the TMBC dataset [57] 
is ∼ 4.4 million but the maximum observed value is 34 
million. Mean trimming of the right-most 1% of extreme 
observations reduced the overall standard deviation by 
an order of magnitude in almost all datasets (Fig.  1A). 
We note, however, that not all of the extreme observa-
tions are artifacts that can be safely trimmed. Analysis 
below suggests that many high count transcripts occur in 
transcripts including ERBB2 (HER2) and samples where 
over-expression is expected. It should be stressed that 
even after trimming, the range of counts for many tran-
scripts in fRNA-seq data remains very broad. For exam-
ple, transcript counts for the estrogen receptor 1 (ESR1) 
in the Sunnybrook fRNA-seq dataset range from just 1 to 
more than 100,000.

Six different distributions were fit to the data using 
the AIC as a measure of fit. A significant majority of 
transcripts are best fit by the NB distribution for all 
but the normal tissue samples of GSE47462 (Fig.  1C). 
Because the various distributions differ in their number 

Fig. 1  Distributional properties of fRNA-seq data. A For each dataset in our compendium, transcripts were ordered from highest to lowest count. Depict-
ed here is the number of highest transcripts removed from each dataset versus the reduction in the standard deviation. MALAT1, NEAT1, XIST, COL1A1/2, 
MT- mitochondrial and RN- ribosomal genes are highly and ubiquitously have many reads likely due to their large size. The standard deviation drops by 
an order of magnitude after the highest 5 transcripts are removed. B Histogram of the (log) mean count for transcripts in the GSE209998 dataset. Note the 
extreme outliers > 105 counts. C For each dataset (row), the fraction of all transcripts with the best fit by distribution (column). The NB distribution has 
the highest frequency for all but GSE47462. E The vast majority of transcripts are better fit by the NB than the ZINB under the AIC criterion. E Hexagonal 
heatmap of the log mean versus the log variance of each transcript in GSE209998. The green line indicates the trend if the variance equaled the mean, 
while the red line indicates the trend for a quadratic mean-variance relationship. F Distribution for estimated dispersion θ with dataset GSE47462
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of parameters and the AIC contains a weak penalty for 
model complexity, we repeated the analysis using the 
KS D statistic, which does not adjust for model size, but 
arrived at the same result (see Supplementary Informa-
tion and Fig. S1A).

Figure  1C also suggests that transcripts often prefer 
the exponential distribution. However, we observed that 
this preference is highly dependent on the percentage 
used to trim outliers. That is, the preference for the expo-
nential fit is strongly influenced by the number of highly 
expressed transcripts in the right tail (see Supplementary 
Information and Fig.  S1B), further highlighting the fact 
that fRNA-seq data is prone to extreme measurements.

A significant fraction of transcripts have zero counts in 
all of the fRNA-seq datasets (ranges from 0.1 to 0.5 with 
median 0.46; Table  S2). Zero-inflated extensions to dis-
tributions like the NB are often considered in such cases. 
In addition to the mean µ and dispersion θ of the NB dis-
tribution, the ZINB has a third parameter π that controls 
the probability of a so-called dropout event (a zero count 
for a transcript that is not a variate from the NB). How-
ever, Fig. 1D reports very little support for the ZINB. A 
direct comparison between the NB and ZINB reaffirms 
that observed zero counts are almost always well-mod-
eled by the NB alone (Fig. 1D). Additional analysis in the 
Supplementary Information provides evidence that this is 
not due to model complexity. It is common in the context 
of NB-related distributions to express the variance as a 
function of the mean and the dispersion parameter θ as 
follows:

	 σ2 = µ + θ · µ2,

highlighting the fact that high values for θ induce a large 
variance in the NB distribution. This variance often 
appears to be sufficient to model the observed quantity 
of zero counts in fRNA-seq data, a conclusion which has 
also been reached for scRNA-seq data [41]. Figure  1E 
reaffirms the choice of an NB over a Poisson distribu-
tion, since the variance is observed to be greater than the 
mean.

A previous fRNA-seq transformation uses a probabi-
listic model where each transcript across all samples is 
decided to be modelled using either exclusively a (trun-
cated) Gaussian or zero-inflated Poisson (ZIP) [32, 33]. 
Across our fRNA-seq compendium, their algorithm 
assigns only a small minority of all transcripts < 17% to 
the ZIP; the remainder are fit to a Gaussian. We observed 
very little support for the Gaussian, and found even less 
support for the ZIP (Fig.  1C, third and final column, 
respectively).

After fitting an NB(µ, θ) to each transcript within each 
dataset, the overall mean µ is observed to be 710 but with 
an extremely large standard deviation, ranging from 666 

to 43,713 (Table  S2). We also observe a mean disper-
sion θ of 1.47 with a large relative standard deviation of 
approximately 1.5. Few transcripts have an estimated θ 
below 0.01 and few transcripts have an estimated θ above 
5. An NB distribution with θ < 1 is maximized at 0 with 
many near-zero counts, whereas larger θ are maximized 
strictly above 0. Many transcripts, including ERBB2/
HER2 and ESR1, have larger values for θ greater than 3 
(Fig. 1F); these induce a flat, long NB distribution.

fRNA-seq data as a mixture of distinct technical and 
biological effects
It is well-established that technical variables often have a 
significant impact on distributional parameters in -omic 
profiling. This includes variables such as library size, 
batch number and library complexity (e.g., percent dupli-
cation and DV200). Across the fRNA-seq compendium, 
library size was highly dependent on batch number in 
all datasets where this information is available (one-way 
ANOVA, all p < 0.001). Moreover, both the location 
µ and scale θ parameters for the fitted NB distributions 
are almost always significantly different between batches 
(log-likelihood-based test of the change in fit between 
batch-dependent parameters). The percentage of dupli-
cate reads also differed significantly between batches 
(p < 0.01 for all available datasets).

Biological variables (e.g., hormone receptor status, 
proliferative index, grade in cancer studies) should of 
course have a significant impact on the fRNA-seq pro-
files. To investigate how count distribution is affected, we 
focused on patient subtype across the breast cancer data-
sets within the compendium. It is well established that 
breast cancer samples can be partitioned into at least five 
distinct subtypes at the transcriptional level. Moreover, 
the expression of many genes is strongly subtype depen-
dent. PAM50 is a commonly used classification tool that 
subtypes samples according to the counts of 50 specific 
transcripts for invasive [59] and in situ [65] lesions. Large 
differences in fitted NB parameters were observed when 
samples were stratified by the PAM50 subtype for the 
vast majority of the transcripts (Figs. 2 and S2). For exam-
ple, the location parameter of the NB distribution for 
estrogen receptor 1 (ESR1) is markedly higher for luminal 
A (dark blue) and B (light blue) estrogen receptor positive 
subtypes in comparison to all remaining estrogen recep-
tor negative subtypes; this is consistent with the original 
data represented (Fig. 2A). The fitted subtype NB distri-
butions for Keratin 5 (KRT5) have the largest location 
parameter for normal-like lesions (green), the subtype 
where it is highest expressed according to the original 
PAM50 manuscript [59]. The NB fits for ERBB2 (HER2) 
and GRB7, two genes in the 17q12 amplicon characteris-
tic of HER2 positive tumors (pink), have location (µ) and 
scale parameters (θ) well above zero only in the HER2 
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subtype (Fig. e2B). Note also that ERBB2 (HER2) counts 
are at least one order of magnitude larger than all other 
transcripts, and there is a large variance in counts across 
the samples. Likewise, epidermal growth factor (EGFR), 
a well established marker of basal-like (red) and normal-
like (green) tumors have similar NB fits in these two sub-
types. The NB distribution here is flat, which corresponds 
to a high θ as discussed earlier.

It is clear from these examples and others (Fig. S2) that 
the distribution of a transcript is heavily influenced by 
biological effects, shown for subtype in this case. Because 
the approach from Yin et al. [32, 33] decides for each 
transcript over all samples whether it is modelled with a 
Gaussian or with a ZIP, it is not able in its current form 
to adapt to such effects. Instead, all transcript counts will 
be fit to a Gaussian, since their algorithm almost always 
assigns transcripts to this component, resulting in poor 
fits, especially lowly expressed genes. The mean and dis-
persion parameters of the NB distribution are far more 
flexible, providing good fits to a variety of distributional 
shapes (Fig. 4C).

We again do not see strong evidence for use of the 
ZINB over the NB distribution with any of the PAM50 

genes when samples are stratified by subtype (Fig.  S2). 
The need for the ZINB distribution would be clearly jus-
tified if we observed a large spike of zeros in cases where 
µ is well above 0. Instead, it appears that the NB distribu-
tion with a suitably high dispersion θ is sufficient in cases 
where µ is close to 0. We conclude that fRNA-seq data-
sets are well-modeled by the NB distribution albeit with 
large dispersion at times.

The simple PREFFECT model robustly estimates generative 
parameters when dropout rates are within observed 
ranges
Given the observations made above, PREFFECT was 
designed to model transcript count data by fitting it to 
NB or ZINB distributions, using observed transcript 
counts and conditioned by sample metadata. A condi-
tional VAE is used to optimize the fits per transcript and 
sample while adjusting for technical and biological effects 
using a mathematical formulation (Fig. 3C) also used in 
scRNA-seq frameworks (e.g. scVI [45]), although the 
architecture of the model differs significantly through 
extensive train/validation/test based-learning with both 

Fig. 2  The behaviour of the breast cancer subtype PAM50 transcripts in fRNA-seq data. A Heatmap modified from [59], depicting the expression of each 
of the PAM50 transcripts across the five breast cancer subtypes in the original data. Here, red and green depict over- and under-expression of the tran-
script respectively. B Histograms of transcript counts in the Sunnybrook DCIS tumor cohort for selected PAM50 genes (enlarged rows of the heatmap in 
A) colored by their subtype. A NB distribution was fit for each transcript in each subtype independently after median library size adjustment and trimming
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real and pseudo-synthetic fRNA-seq data (Figs. 3A, B, S3, 
Methods, Table S3).

Using the distributional parameters from observed 
fRNA-seq datasets, we generated so-called pseudo-syn-
thetic samples where we know the ground-truth counts 
and overall distributions. This was repeated across a 
range of values for both the µ and θ NB parameters 
which capture the behavior of the vast majority (> 95%) 
of transcripts in the fRNA-seq compendium (see Meth-
ods). The pseudo-synthetic datasets allows us to mea-
sure the capacity of the simple PREFFECT model to 
recover generative parameters across a broad range of 
values. Figure  4 shows that performance is near perfect 
for both µ (panel (A) and θ (B) everywhere except when 
θ is very small (0.01). Such small values correspond to 
NB distributions with almost all zeros (top of panel C). 
In total, 99% of all transcripts have a θ larger than 0.01. 
Although the pseudo-synthetic data was generated using 
an NB distribution, the ZINB still accurately assessed the 
parameters µ and θ (second column of panel A and B).

The elevated number of zero counts for transcripts in 
fRNA-seq data motivated a study of how well PREFFECT 
can impute missing values. We used a simple self-learn-
ing approach to imputation where PREFFECT replaces 
masked values with the adjusted expected value from 
the estimated distribution. To explore this, we again used 
pseudo-synthetic data generated with an NB distribu-
tion as described above. However, now each transcript 
is subjected to dropout with a randomly assigned rate 
π ∈ U(0 . . . 0.8), producing a ZINB distribution with 
known dropout locations. Not surprisingly, the per-
formance depicted in Fig.  4D–E suggests the quality of 
the fits inferred by PREFFECT are overall poorer than 
simulations without dropout when NB is used. How-
ever, when ZINB is used, the performance remains high 
especially for larger θ values, and decreases only for low 
θ, likely because the presence of many endogenous zeros 
(zeros not caused by dropout) leads to an inflation in the 
estimate of π̂, consistent with the reduction in accuracy 
observed at the top of panel F.

Fig. 3  Overview of PREFFECT. A The simple encoder consists of only the white boxes (count matrix and correction variables). The single encoder inte-
grates the sample-sample adjacency graph with attention mechanisms (purple boxes). B The single decoder extends the simple decoder with multiple 
decoder layers that allow integration of the adjacency information. If a ZINB is the desired distribution, the decoder also estimates a dropout rate π 
denoted in red. C The relationships between all variables from the underlying statistical model. D The full model combines one single encoder model for 
each available tissue
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To examine the impact of the dropout rate π in 
parameter estimation, we constructed a second dataset 
designed in a manner that it would likely contain very 
few endogenous zeros by setting µ and θ appropriately 
(see bottom of Fig. 4C). Therefore, when we mask values 
in the generated count matrix using a random dropout 
rate π ∈ U(0 .. 0.8) for each transcript, the estimate π̂ 
should be very close to π, since the vast majority of zeros 
are truly due to dropout. Figure  4G–I show that PREF-
FECT estimates µ and π well for π < 0.6 but degener-
ates for higher dropout rates. None of the datasets in our 
compendium had a dropout rate ≥ 0.55.

The simple model can accurately adjust for batch effects
Generative models can be used to hypothesize how a 
dataset might change as specific effector variables are 
modulated. For example, in large-scale projects, samples 
are prepared and profiled in batches, and this batch vari-
able can systematically affect a count matrix. It is often 
necessary to adjust the batches to remove such effects 

before downstream analyses. We explored the capacity of 
PREFFECT to identify and ablate batch effects.

In the first experiment, counts were generated for all 
samples using a family of NB distributions with location 
parameters determined by a single underlying transcript 
frequency vector ω. The samples were then randomly 
assigned to batch 0 or 1, but only counts for transcripts 
in batch 1 were systematically increased to simulate the 
batch effect (see Methods). As expected, after training, 
samples clearly cluster by batch number when the fre-
quency vectors are computed from the observed count 
matrix (UMAP, Fig.  5A). However, by shifting samples 
in batch 1 towards batch 0 in the latent space, the resul-
tant adjusted count matrices no longer cluster by their 
batch (Fig.  5B). Figure  5C confirms that the frequency 
vectors computed from the simulation differ between 
batch 0 and 1, as expected. If PREFFECT successfully fits 
a good model, the difference in values between batch 0 
in panel C and panel D will be marginal. The same state-
ment holds for batch 1 between panels C and D. Lastly, 

Fig. 4  The ability of PREFFECT to recuperate generative parameters. NB counts were generated for N = 1000 transcripts across M = 1000 samples 
across a range of parameterizations for µ and θ. PREFFECT was then used to infer parameter levels under either an NB (left column) and ZINB (right col-
umn) model. Colors in the heatmap correspond to the mean relative error (MRE) between the generative parameters µ (A) and θ (B) versus their respec-
tive estimates µ̂ and θ̂. The MRE remains very low for all parameters except when θ is very small. C. Examples of the effect of θ on the NB distributions. 
When θ is very small at 0.01, many transcripts have a zero count. D, E, F The ability of PREFFECT to recuperate generative parameters when challenged 
with dropouts. The same synthetic generative methods from panels A and B are repeated but now each transcript was subjected to random dropout 
(from 0 to 80% of all samples are set to 0). PREFFECT was used to infer parameters. As expected, the ZINB model is near universally better than the NB 
model, where µ (D), θ (E) and π (F) have low MRE except for small dispersion θ levels. G, H, I The performance of estimating ZINB parameters µ and θ with 
random amounts of dropout where θ = 10. G: Color is proportional to the MRE of the masked positions for each transcript (point) plotted according to 
the generative parameters µ and π. H: Color represents the MRE relative to π and π̂; and I: MRE relative to the generative µ̂ and θ̂
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Fig. 5 (See legend on next page.)
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by shifting batch 1 samples towards batch 0 in the latent 
space, batches 0 and 1 will have nearly identical fre-
quency vectors, as observed in panel E, indicating a suc-
cessful ablation of the batch effect.

The second experiment tests the ability of PREFFECT 
to identify and adjust for a batch effect at different lev-
els of pervasiveness. Here, a series of PREFFECT models 
were fit to a count matrix similar to the first experiment, 
but only a fraction p of the transcripts in batch 1 received 
the batch adjustment. We computed the difference 
between two similarities: (ii) the similarity between the 
generative transcript frequencies ω and the estimated 
frequencies ω̂, and (i) the similarity between ω and ω̂ 
after adjusting for the batch effect with the latent space, 
denoted ω̄. For all values of p, the batch adjustment ω̄ is 
more similar to the true generative ω (Fig. 5F).

The third experiment was designed to ensure that 
important biological variation is retained after batch 
adjustment. Figure  5G extends the previous exploration 
to investigate cases where the samples differ by both their 
batch and their subtype (representative of a biological 
effect). To simulate this, samples were randomly assigned 
(with equal probability) one of two subtypes α and β 
each with a distinct frequency vector ωα, ωβ  respectively. 
Again, regardless of the pervasiveness p of the batch 
effect, the adjustment increases the amount of mixing 
between the two classes. This can be seen by the decrease 
in the kBET scores. At the same time we observe that 
the adjustment increases the degree of similarity with 
the two true generative frequencies. This means that 
the important biological differences are retrained since 
the frequency of the transcript counts tend towards the 
ground-truth generative vectors.

Lastly, we note that although the batch adjustment 
capacity of PREFFECT has advantages, PREFFECT 
transformed count data can also be used with other well-
established tools (e.g. ComBat-seq [66]).

The single tissue PREFFECT model improves sample 
clustering
We sought to integrate additional information that could 
assist with the de-noising and imputation of the count 

data. Toward this end, the single tissue generative model 
extends the simple PREFFECT model by incorporat-
ing a sample-sample network (Fig.  3A, purple). This is 
achieved using so-called graph attention network lay-
ers, which are powerful neural network components that 
assist the artificial neural network to focus attention on 
the most informative components of the learning set dur-
ing training. In our experiments here, two samples are 
adjacent if and only if they are deemed sufficiently simi-
lar. The exact notion of similarity can vary, providing a 
convenient means to integrate complementary types and 
modes of data.

We explored how the inclusion of the sample-sample 
network can improve the performance of downstream 
tasks, specifically sample clustering. Since available 
fRNA-seq datasets are limited in size, we generated 
a pseudo-synthetic dataset consisting of 200 samples 
for each of the 5 breast cancer subtypes (see Methods). 
Briefly, we estimated frequency vectors for PAM50 tran-
scripts for each of the five subtypes depicted in Fig. 6A, 
generated a large set of pseudo-synthetic samples for 
each subtype, and ensured that the resultant samples 
had similar patterns of expression as the original PAM50 
study (Fig. 2A). Two patient samples were made adjacent 
if and only they had the same subtype.

Not surprisingly, the single-tissue model trained 
with the network was able to recuperate the sub-
type-specific transcript frequency vectors ω (average 
JSD(ω, ω̂) = 0.016 ± 0.017; Fig.  6B). Moreover, the 
UMAP produces five distinct clusters that nearly per-
fectly separate samples by subtype (panel F; Silhouette 
statistic 0.85). To test the contribution of the adjacency 
network, we repeated the training process but this time 
removed a fraction of all edges. Figure  6C depicts the 
estimated frequency vectors when 80% of all edges were 
removed, leaving only 20% of the edges between samples 
of the same subtype. There is a noticeable decrease in the 
model’s capacity to recapitulate the generative transcript 
frequencies ω (average JSD(ω, ω̂) = 0.041 ± 0.029). This 
is reflected in the associated UMAP where each “snake-
like” cluster contains samples with different subtypes 
(panel G; −0.07 Silhouette). The last experiment instead 

(See figure on previous page.)
Fig. 5  Adjusting for batch effects. A PREFFECT model was derived using synthetic data with a simulated batch effect on all transcripts with a randomly 
chosen subset of samples. A UMAP embedding using the frequency vector ωs for each sample s obtained from the raw count data. B UMAP embedding 
using the estimated frequency vectors ω̂s after adjusting the latent space of batch 1 to batch 0. C The average fraction of all counts for each transcript 
between batches in the raw synthetic data. D After training, these same fractions are retained when no adjustment is carried out. E. During inference, all 
transcripts were adjusted to batch 0. F, G Correction with respect to fractional batch effect. Synthetic datasets were generated where counts for a fraction 
f of the transcripts (f ∈ {0.5, 0.6, . . . , 1}) in batch 1 were subjected to the effect. F The difference in the Jensen-Shannon divergence (JSD) was com-
puted between the true generative transcript frequencies ω and ω̂, and between ω and the estimated frequencies after adjusting for the batch effect ω̄. 
For all fractions f, the ∆JSD is negative implying that the adjustment has shifted the estimated frequencies closer to the true generative distributions. 
∗, ∗∗, ∗ ∗ ∗ denote p < 0.05, 0.01, 0.001 resp. derived from a t-test of whether the ∆JSD always improved. The k-BET measure of cluster mixing was 
always 1 (no mixing) before batch adjustment; blue color bars show k-BET after batch adjustment. G Similar to F but here samples were randomly as-
signed to either the α or β subtype with distinct transcript frequency vectors ωα and ωβ  respectively. Heatmaps below panels F and G visualize kBET 
across UMAP-defined sample clusters pre- and post-adjustment
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introduces false positives into the adjacency matrix prior 
to training. Again, the capacity of the model to reca-
pitulate the ω vectors is reduced but remains significant 
(average JSD(ω, ω̂) = 0.042 ± 0.052; 0.63 Silhouette; 
Fig. 6D) and the resolution of the UMAP has decreased 
with some HER2-enriched samples clustering with nor-
mal-like samples, and some confusion between luminal 
A and B (panel H). The reconstructed networks, which 
are allowed to evolve via distinct components of the VAE 
(Supplementary Information), are nearly indistinguish-
able from the original input graphs (Fig.  6I–K). These 
experiments show that PREFFECT is able to take advan-
tage of the network information, which in this case allows 

the learner to focus attention on samples with the same 
subtype and therefore transcripts with similar count 
levels.

Full PREFFECT model: integrating multiple matched tissues
In many genomic-based clinical studies, matched fRNA-
seq data is also available for related tissues or conditions 
in addition to the primary target tissue. For example, 
in disease studies, often both the affected and matched 
healthy/normal tissue from a patient is profiled. In can-
cer, the profiles of an index lesion can be complemented 
by profiles of their match normal tissue, the tumor 
microenvironment, and metastatic sites. The inclusion 

Fig. 6  The adjacency information assists in down-stream applications such as sample clustering. A pseudo-synthetic count matrix was constructed using 
NB distributions for the PAM50 transcripts derived from breast cancer fRNA-seq datasets. A A heatmap of frequency vectors ω for each of the 5 PAM50 
breast cancer subtypes. B A heatmap inferred ω̂ of a PREFFECT model built using an informative sample-sample edge matrix. The UMAP is also clustered 
from the ω̂. C The ω̂− when 80% of edges of the sample-sample adjacency matrix were randomly deactivated. D The ω̂+ when 80% of edges of the 
sample-sample adjacency matrix were randomly activated. E We compare the distributions of ω̂ from B-D to the generative ω (A) of each subtype via 
JSD. We plot ∆ JSD of ω̂ (B) to either ω̂− or ω̂+ (C–D) across each PAM50 subtype. F-H. UMAP clustering of ω̂ from B-D, respectively. I. The adjacency 
matrix for a random subset (M = 200) of the samples. Here yellow corresponds to the existence of an edge indicating both samples have the same 
subtype (probability of 1) and black corresponds to no edge (probability of 0). J. The reconstructed adjacency matrix. K. Differences between the gener-
ated and reconstructed adjacency matrices
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of multiple matched tissues can improve performance, 
especially when there is significant dropout of transcript 
counts. Figure 7 provides an intuition of how this infor-
mation is “borrowed” across profiles. In addition to the 
count matrices, the adjacency matrices are also updated 
during training to find the best fit possible (Fig. 3D and 
Supplementary Information).

To investigate the benefits of multiple tissue analy-
sis, we turn once again to breast cancer as an example, 
since we have access to a dataset with matched primary 
tumor and stroma profiles and we know the ground truth 
subtype assignments for the tumor samples. It is well-
established that breast cancer samples have both a pri-
mary tumor subtype [59, 67] and a tumor stroma subtype 
(e.g., [68]). The tumor and stroma subtyping schemes are 
distinct and the relationship between them appears to 
be complex and is still not fully understood. Our goal is 
to show that PREFFECT can use information from the 
stromal samples to form better sample clusters in the pri-
mary tumor, and vice versa.

To explore this, we generated pseudo-synthetic count 
matrices for both tissues as follows (see Methods for 
more details). Starting with the primary tumor matrix, 
samples were randomly assigned to four breast cancer 
PAM50 subtypes; in each sample 50 transcripts corre-
spond to PAM50 and the rest with random counts. Next, 
for the stroma, each sample was assigned a subtype: basal 
samples were randomly assigned either stromal subtype α 
or β, HER2-enriched samples were assigned stromal sub-
type γ, and luminal A and B samples were assigned stro-
mal subtype δ. A distinct frequency vector was generated 
for each stromal subtype and used to generate counts 
for the 50 stromal genes. Random values were assigned 
to the PAM50 transcripts in the secondary tissue dataset 
(that is, the PAM50 transcripts are not informative in the 
stromal samples). In this two-tissue scenario, we would 
expect that samples will cluster according to the four 

tumor subtypes when the tumor count matrix is used, 
but α and β samples would not separate. Conversely, we 
expect that the samples will cluster by the four stromal 
subtypes when the stromal count matrix is used, but the 
luminal A and B samples would not separate.

Figure  8A confirms this hypothesis regarding sepa-
ration of the luminal A and B subtypes when using the 
tumor counts. Interestingly, in the stroma-related Fig. 8B, 
we also observe the luminal A and B samples separated. 
We hypothesize that this unexpected result is due to 
backpropagation during model training, which trans-
fers information from the model of tumor counts to the 
model of stromal counts. Regardless, when the com-
bined latent space is used to cluster the samples, both 
the tumor luminal A and B subtypes and the stromal α 
and β subtypes are separated (Fig. 8C). This shows that 
the underlying artificial neural network is using informa-
tion from both tissues when deciding the relationship 
between samples from both tissues.

PREFFECT models with contemporary fRNA-seq datasets
We examined the capacity of PREFFECT to fit good 
models with available fRNA-seq datasets, and tested 
whether the resultant models aided in downstream anal-
ysis, specifically sample clustering. Simple models were 
built for each dataset in the compendium, but our anal-
ysis below focuses once again on the six breast cancer-
related datasets to investigate performance. Here, models 
were restricted to N = 776 genes from the well-studied 
pan-breast cancer BC360 panel (NanoString Inc.), since 
we can expect that these transcripts will vary significantly 
across the datasets. Initially, hierarchical clustering was 
applied to the data instead of applying PREFFECT (log-
transform mean trimming 1% with variance stabiliz-
ing transformation). We observe a broad range of count 
values with many zero counts (represented by white). 
Although clusters are enriched for same-subtype sam-
ples (especially basal), many subtypes (especially luminal 
B) are diffuse across the clustering (Fig.  9A for dataset 
GSE167977). When the inferred transcript frequencies ω̂ 
are used instead, the expression becomes more polarized 
away from 0, presumably due to imputation of missing 
values. Panel B depicts the inferred transcript frequen-
cies ω̂ using the same transcript and sample ordering as 
panel A for comparison purposes. When the samples and 
transcripts are re-clustered using the inferred transcript 
frequencies, we see much more homogeneous clusters 
for every subtype with the exception of the basal subtype 
which was already homogeneous (panel C). The adjusted 
rand index (ARI) increases from 0.32 for enrichment 
of subtypes in the sample clusters of panel A to 0.61 in 
panel C. Figure S5 depicts the hierarchical clustering of 
samples and subtype assignment analogous to panel A 
using only a VST (without PREFFECT). It has a slightly 

Fig. 7  Neighborhood information is encoded in the adjacency networks. 
The target transcript gi in the primary tissue (blue) is influenced by the 
counts from its neighbouring samples in the primary tissue, but also by 
the expression of gi in the other available tissues 2 (green) . . . τ  (pink), 
which are in turn influenced by their neighbours in the sample-sample 
network
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Fig. 9  PREFFECT models improve the quality of downstream patient clustering. A simple PREFFECT model was fitted using the BC360 (NanoString Inc.) 
panel from dataset GSE167977. A Hierarchical clustering was performed using the PAM50 transcripts contained in the BC360 panel. B The same sample 
and transcript clustering is re-drawn from panel A but instead here color corresponds to the estimated transcript frequencies ω̂. C Using the estimated 
frequencies ω̂, the samples and transcripts are re-clustered, resulting in sample clusters which are more homogeneous, consisting of a single subtype. In 
all panels, PAM50 subtypes were inferred from observed counts (top) and also from the inferred frequencies µ̂ (bottom)

 

Fig. 8  Multi-tissue PREFFECT models can be developed using information from both primary and secondary matched tissues. To test the full model, 
we developed both a pseudo-synthetic breast cancer tumor count matrix (where PAM50 transcript counts follow subtype-specific distributions) and a 
secondary synthetic stromal count matrix (where a second set of 50 transcripts had counts separating them into four stromal subtypes α, β, γ, δ). Hier-
archical clustering was applied to the resultant latent spaces A The latent space of the primary tumor tissue, which clusters according to PAM50 subtype 
but not stromal subtypes. B The latent space of the secondary stromal tissue, which clusters according to stromal subtype but also surprisingly separates 
luminal A from B in the tumor, likely due to information transfer during the learning procedure. C The combined latent space, which clusters the samples 
by the cross-product of the two subtyping schemes
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poorer performance than the non-PREFFECT clustering 
of panel A with an ARI of 0.28.

Discussion
FFPE material is an important but under-utilized 
resource of well-preserved samples for both human 
health and disease. The profiles obtained from applying 
next generation RNA sequencing to FFPE material are 
noisy, prone to extreme measurements and contain a 
high zero count for transcripts (nearly one half at 0.45). 
The problematic nature of fRNA-seq underscores the 
importance of using the appropriate normalization and 
transformation as a first step in any analysis. Most stud-
ies to date have relied on techniques from bulk RNA-seq 
which often focus on fresh frozen tissues, cell lines or 
other forms of largely intact material. However, variance 
stabilization transformations are inoptimal for profiles 
with elevated zero counts. A typical scRNA-seq study, 
which shares some of the same challenges as fRNA-seq, 
has the luxury of orders of magnitude more cells than the 
number of samples in most fRNA-seq studies and it has a 
more restricted transcript count range.

Our analysis of the fRNA-seq compendium suggests 
that the vast majority of transcript counts are well-mod-
eled by an NB distribution. This is consistent with other 
types of RNA-seq data, although both the mean µ and 
dispersion θ parameters vary considerably compared to 
other types of RNA-seq data including bulk and single-
cell profiling. Although there is very considerable drop-
out, the NB is still able to model transcript counts well 
and we observed little support for use of the zero inflated 
extension (ZINB) with additional dropout parameter π. 
The NB distribution is well-established in expression pro-
filing and serves central roles in many downstream appli-
cations including differential expression (e.g. DEseq2). 
We do not observe support for a previous effort (MIX-
norm) which assumes that each transcript follows either 
a zero-inflated Poisson or a truncated Gaussian.

We focused here on breast cancer datasets and breast 
cancer subtype in our analyses. This restricted focus 
allowed us to comment on the performance of PREF-
FECT, since the behavior of many transcripts central to 
determining the subtype of a tumor is extremely well-
characterized including the 50 transcripts of PAM50. In 
this sense, breast cancer subtype provides us with a gold-
standard or “ground truth” to judge improvements in 
downstream applications post-PREFFECT.

Generative models allow observed data to be decom-
posed or “factorized” by such variables, whether they 
are known or unknown. PREFFECT is a series of gen-
erative models based on conditional VAEs to impute 
and factorize observed transcript count data to de-noise 
and adjust for both technical and biological variation. 
Unlike a previous fRNA-seq model [32, 33], PREFFECT 

has the capacity to modulate the distribution param-
eters in response to the state of biological variables such 
as patient subtype, an important capacity given the 
observed subtype-specific behavior of many transcripts. 
PREFFECT offers a number of alternatives to adjust for 
batch effect, and the PREFFECT adjusted count matrices 
can be easily used with other batch correction tools such 
as ComBat-seq [66].

We showed that PREFFECT can accurately infer gener-
ative parameters and accurately impute missing values for 
the range of values observed in the real data. Although 
PREFFECT performed well when evaluated on a test 
dataset with samples not seen during training, broader 
experimentation beyond our current compendium is still 
required. Imputation can be problematic, introducing 
for example bias, false correlations, and causing p-value 
inflation [69]. In short, imputation and other features 
facilitated by generative modelling are powerful tools for 
discovery in clinical FFPE cohorts, but additional due dil-
igence is necessary if clinical diagnostics were to directly 
rely on the inferred information.

This single tissue model uses graph attention networks 
(GATs) to assist the learner to attend to the most influen-
tial neighbors (samples) from which infer distributional 
properties. We observed how such imputation can lead 
to better patient subtyping with breast cancer datasets. In 
general, the attention networks can be designed to inte-
grate diverse types and modes of data into analysis. The 
full model allows for multiple matched tissues from the 
same patient sample to be integrated. To the best of our 
knowledge, this is the first generative tool to incorporate 
multiple patient-matched tissues and graph attention.

The vast majority of available fRNA-seq datasets cur-
rently are of moderate size with a median of 93 samples 
in our compendium, a value that is four orders of mag-
nitude lower than some datasets available for scRNA-
seq. Generative approaches such as PREFFECT, which 
provide a means to ablate nuisance technical parameters 
and better capture true biological signal, would certainly 
benefit from larger fRNA-seq datasets, given the degree 
of variability and extreme measurements, especially in 
contexts such as cancer where we know that samples are 
affected by strong transcriptional programs (e.g., estro-
gen receptor status in breast cancer and other subtype-
related programs).

The undersized nature of current fRNA-seq datasets 
may partially explain why FFPE-based studies remain 
very challenging. Although PREFFECT is able to fit mod-
els to existing datasets, training required multiple runs 
with different parameter settings and we often had to 
make use of pseudo-synthetic extensions of these data-
sets. This can introduce subtle biases into studies. We 
conjecture that PREFFECT would benefit greatly from 
much larger sample sizes and result in more accurate 
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downstream analyses (e.g. differential expression, sur-
vival analyses, clustering).

Conclusions
RNA extracted from FFPE materials suffers from deg-
radation, fragmentation, and chemical modifications 
that pose significant challenges for molecular analyses. 
Transformation and normalization of raw transcriptional 
data is a critical step that affects all types of downstream 
analyses needed for biomarker discovery and molecular 
characterizations. We developed PREFFECT to char-
acterize and de-noise fRNA-seq data to enable more 
precise downstream analyses. such as differential expres-
sion, survival analysis, and clustering. PREFFECT per-
formance was shown to be improved when information 
from multiple tissues and associated samples are lever-
aged to inform the graph attention mechanisms. PREF-
FECT is available as open source software and can be 
easily modified and extended. Our hope is that it serves 
as a central point for the community to reason about 
large-scale fRNA-seq studies.
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