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Abstract

Background Formalin-fixed paraffin embedded (FFPE) samples suffer from the degradation of nucleic acids, a
problem that becomes particularly acute with samples stored for extended periods. It remains challenging to
profile FFPE using high-throughput sequencing technologies including RNA-sequencing, and the resulting FFPE
RNA-seq (fRNA-seq) data has a high rate of transcript dropout, a property shared with single cell RNA-seq. Transcript
counts also have high variance and are prone to extreme values, together making downstream analyses extremely
challenging.

Methods We introduce the PaRaffin Embedded Formalin-FixEd Cleaning Tool (PREFFECT), a probabilistic framework
for the analysis of fRNA-seq data. PREFFECT uses generative models to fit distributions to observed expression
counts while adjusting for technical and biological variables. The framework can exploit multiple expression profiles
generated from matched tissues for a single sample (e.g., a tumor and morphologically normal tissue) in order to
stabilize profiles and impute missing counts. PREFFECT can also leverage sample-sample adjacency networks that
assist graph attention mechanisms to identify the most informative correlations in the data.

Results We evaluated the distribution of transcript counts across a compendium of fRNA-seq datasets, finding the
negative binomial distribution best fits the data with little evidence supporting zero-inflated extensions. We use this
knowledge in the design of PREFFECT. We show that PREFFECT can accurately impute missing values from fRNAseq
count matrices and adjust for batch effects. The inclusion of sample-sample adjacency networks and multiple tissues
were shown to enhance sample clustering.

Conclusions The vast majority of studies to date contain at most a few hundred profiles, making it challenging to
correctly infer good statistical fits for each transcript especially in complex cohorts, given the noisy, incomplete and
heterogeneous nature of the data. The integrative and generative approach of PREFFECT provides better and more
specific model fits than generic bulk RNA-seq tools, especially when more advanced PREFFECT models provide
matched profiles are included in the analysis. The transformed data can be directly used with many well-established
tools for downstream analysis tasks, empowering its use in clinical biomarker studies and diagnostics.
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Background

Formalin-Fixed Paraffin Embedded (FFPE) material
has long been used in histopathology to store samples
in a manner which preserves cellular structure and tis-
sue morphology, and has been exploited in diagnostic
pathology since at least 1991 [1]. Its ease of storage and
cost-effectiveness has enabled the pathology of health
and disease to be cataloged with over one billion archi-
val samples available worldwide [2—4]. FFPE constitutes
a significant resource for retrospective clinical research
and prospective studies, potentially eliminating the need
for the collection of fresh frozen specimens. However,
since it remains challenging to profile and analyze FFPE
samples with modern high-throughput technologies,
this resource has been under-utilized. Our goal here is
to facilitate the analysis of FFPE-based RNA-sequencing
studies (fRNA-seq).

It is well-established that FFPE-harvested material can
be of sufficient size and quality for use in modern -omic
projects [5-9] including RNA-seq [10-17]. Neverthe-
less, it is also well-recognized that molecular profiles of
FEPE samples generated by -omic technologies including
next-generation sequencing contain significant error and
bias, likely in large part due to degradation and modifi-
cation introduced along each step of FFPE handling. For
example, during fixation, formalin causes the formation
of methylene bridges which alters the structure of nucleic
acids (and proteins) [18], and results in fragmentation
and mutations [19]. The subsequent dehydration pro-
cess causes denaturation of nucleic acids and proteins,
which may reduce RNA stability after renaturation. Heat,
modulation of pH levels and endogenous enzymes (e.g.,
nucleases) during de-crosslinking can cause further
nucleic acid damage particularly to labile RNA [20]. The
rate of degradation of nucleic acids is dependent on time,
the fixation process used, and storage conditions [21-23].
Extraction can cause damage in several additional ways
[16, 24—26].

Several studies comparing profiles of fresh frozen sam-
ples and their matched FFPE embeddings confirm that
the damaging agents together induce significant degen-
eration [27]. For example, Jacobsen and colleagues [28]
observed that RNA extracted from FFPE tissue had a
median RNA integrity number (a quality measure based
on the ratio of ribosomal RNA peaks and the overall RNA
degradation pattern) of 2.5 and a DV200 (the percentage
of RNA fragments that are greater than 200 nucleotides
in length) of 48% compared to RNA extracted from fresh
frozen tissue with a median integrity number of 8.1 and
DV200 of 97%, representing nearly a two-fold degrada-
tion. In general, transcript counts are generally reduced

in fRNA-seq profiles compared to matched fresh fro-
zen RNA-seq profiles [5, 9]. Missing RNA species result
in what is referred to as dropout or zero counts. Several
efforts have observed an elevation in the number of zero
counts in fRNA-seq profiles [9, 29]. Fragmentation of
transcripts can lead to extremely high transcript counts
due to several different mechanisms [30], and muta-
tions can reduce the rate of successful mapping of reads
to genomic loci [5]. Although there have been advance-
ments in the protocols for nucleic acid extraction and
preparation [17, 31], these problems persist in even the
most recent datasets.

Given the degraded nature of FFPE samples, it is
important to understand the distributional properties
of fRNA-seq data, and to use this information to build
fRNA-seq-specific normalizations, transformations and
de-noising methods. To date, such efforts lag behind
other types of transcriptome profiling, including single
cell RNA-seq (scRNA-seq) and bulk RNA-seq. The vast
majority of fRNA-seq datasets re-purpose bulk RNA-seq
analysis pipelines, although our effort here shows that
this practice may not be optimal. The only fRNA-specific
framework is MIXnorm from Yin and colleagues [32, 33]
which normalizes transcript counts using a special mix-
ture model.

Our effort starts by characterizing the distributional
qualities of the fRNA-seq data. In particular, we provide
evidence that it is well-modeled by the negative bino-
mial (NB) distribution, a property shared with bulk and
scRNA-seq data and for which a considerable number
of downstream applications (e.g. differential expression)
are built upon. We also identify aspects of fRNA-seq that
are distinct from sc- or bulk RNA-seq. One obvious dif-
ference is that FFPE studies are much smaller than most
scRNA-seq studies: the estimated 1500 fRNA-seq datas-
ets in international repositories (e.g., ENA, SRA, dbGaP)
typically contain on the order of 10? samples, while most
scRNA-seq studies contain on the order of 10* — 106
samples.

Using the inferred distributional information, we
introduce the PaRaffin Embedded Formalin-FixEd Clean-
ing Tool (PREFFECT), a probabilistic model for fRNA-
seq data. PREFFECT uses a series of generative models
to re-express observed transcript counts using either an
NB distribution or a zero-inflated extension alongside
metadata corresponding to known technical and bio-
logical effects in the data. Similar approaches have been
explored in the context of scRNA-seq data analysis [17,
34-51]. PREFFECT contains a series of conditional varia-
tional autoencoders (cVAEs) which allow multiple tis-
sues to be considered simultaneously in addition to graph
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attention mechanisms [47, 52] which assist by highlight-
ing information in matched samples which may assist
during model training, an important capacity when high
dropout rates are observed. This transformed data can be
directly used for differential expression analyses, survival
analyses and other common downstream tasks. Using
publicly available datasets, we show how the adjusted
count data from PREFFECT improves sample clustering
and classification.

Methods

Statistical analyses were performed using Python ver-
sion 3.9 [53] and R version 4.4 [54]. Hierarchical cluster-
ing was performed using the seaborn clustermap
function with average distance linkage and Euclidean dis-
tance. UMAP was performed using the umap-learn [55]
package in SCANPY [56] (min_dist = 0.3). We use the
mean and dispersion parameterization of the negative
binomial (NB) distribution for convenience, and 7 is used
to refer to the drop-out probability in zero-inflated ver-
sions of distributions. The k-BET measure of cluster mix-
ing was computed using the Python package scib and
the adjusted rand index (ARI) of cluster purity was com-
puted using scikit-learn.

A compendium of fRNA-seq datasets

We collected a large number of fRNA-seq datasets from
public repositories in order to characterize their statisti-
cal properties and then later to test the capacity of PREF-
FECT. Datasets were included only when raw count
information was available. All datasets with GSE identi-
fiers were obtained from the Gene Expression Omnibus
https://www.ncbi.nlm.nih.gov/geo/. The Met
astatic Breast Cancer (TMBC) dataset [57] was available
through cBioPortal [58]. The Sunnybrook cohorts are not
currently publicly available but are pending publication.
We collected clinicopathological and technical variables
(such as batch identification number) whenever pos-
sible. The datasets vary across tissue, cell type, age of the
cohort and profiling technique (Table S2). Transcripts
with zero counts across all samples were removed. Since
the PAM50 subtype for samples was not provided in
most of the breast cancer FFPE datasets, we estimated it
using the PAMS50 classifier [59].

Characterizing the statistical properties of fRNA-seq
datasets

We require an unbiased approach to determine which
statistical distribution best fits transcripts across the
fRNA-seq compendium. We used only a “mild” trimmed
mean approach to mitigate the influence of outliers (set
to 1%), although this was not used when comparing the
NB versus zero-inflated NB (ZINB) distributions, as
increasing the trimmed mean percentage increases the
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number of zeros that are removed and therefore could
result in bias against zero-inflated distributions.

Expression data was fit to six distributions using two
different methods. The Akaike information criterion
(AIC) measures the goodness of fit as 2k — 2In(L) where
k is the number of parameters of the distribution and L
is the likelihood of the model given the observed data.
All non-zero inflated distributions were fitted using the
StatsModels package [60]. For zero-inflated models,
the AIC and distributional parameters were estimated
using the minimize function from scipy [61] to opti-
mize the negative log-likelihood; this was repeated over
a range of initial dropout values 7 to minimize the nega-
tive log-likelihood. The D statistic of the Kolmogorov—
Smirnov (KS) test was computed between the empirical
cumulative distribution function for each transcript in
every dataset and the cumulative distribution function
of each reference distribution. The KS test was used to
ensure that differences in the number of parameters
between the six distributions did not unduly affect the
results. Here again a 1% trimmed mean was applied to
eliminate extreme outliers.

Generation of synthetic datasets

Synthetic datasets provide a convenient means to inves-
tigate technical correctness, model limits and param-
eter optimization for the PREFFECT generative models.
Count matrices were generated across a range of mean and
dispersion values for the NB distribution. For each pair
(i, 0) € {50,100,500,1000} x {0.01,0.1,1,2,5,10, 10t
matrix was formed across the N = 1000 transcripts and
M = 1000 samples using variates from N B(y, §).

To investigate the role of the dropout rate 7 in param-
eter estimation, we constructed a synthetic dataset where
the count R, for each transcript g in each sample is
formed as follows:

log N (loc = 100, scale = 0.1),

Hg o~
NB(ﬂg79 = 1)'

Ry, ~

In several places, we require count data gener-
ated by a ZINB process. Toward this end, each tran-
script in the dataset was assigned a dropout value
m~U(0..0.8). Then 7 samples across the transcript
were randomly selected and set to 0.

Creation of pseudo-synthetic samples

Although contemporary fRNA-seq datasets are often
small (< 500 samples), they are of sufficient size to infer
important distributional properties and parameters. For
each target transcript, we use its observed frequency in
the original dataset and a chosen library size to form syn-
thetic counts following the standard way to generate NB
variates (e.g. Fig. 3C). This method allows us to better
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ensure that samples have similar library sizes. We can use
these to generate as many pseudo-synthetic samples as we
require to train our models. When required, patient sub-
type was estimated in the pseudo-synthetic count data
using the PAM50 classifier [59] after 1% mean trimming
and a variance stabilizing transformation to the counts.
A sample-sample adjacency matrix was constructed by
placing an edge between two samples of the same sub-
type. To evaluate the contribution of the adjacency
matrix to imputation, we constructed a null adjacency
matrix by randomly permuting the edges in the matrix.

Fundamentals of all PREFFECT models

There are three PREFFECT models: simple, single and
full (Table S1B). All models require an unadjusted count
matrix X € Z%XN for the target tissue, where M is the
number of samples and N is the number of transcripts.
All models can accommodate metadata (e.g., batch
number, DV200, percent duplicates), and patient clini-
copathological variables (e.g., grade, stage of a tumor).
PREFFECT uses these variables to adjust the count
data and for conditional inference [62] to adjust the raw
data. Missing transcript count data is assumed to be a
zero count. All other conditional variables must be fully
specified.

The simple PREFFECT model

A more technical exposition of the model is given in the
Supplementary Information and depicted in Fig. S3A,
B. The encoder produces an estimation gg of the true
posterior pg, where ® and © are the sets of all relevant
underlying parameters for g (i.e., weights in the neural
network) and p (i.e., parameters of the underlying true
distribution). g¢ consists of several conditional VAEs
including an (optional) encoder ¢k, for the observed
(log-)library sizes of the samples allowing the library size
to vary during model fitting.

The first decoder maps the latent spaces to fitted count
matrices under an NB or ZINB distribution via three
neural networks f1, f2, f3 (Fig. 3C). Neural network f;
estimates the fraction of reads for each transcript in each
sample c,, 4 along with an inverse dispersion value 0.
Neural network f2 estimates the library size [,,, of each
sample m. 0 and 0/1,, - ¢p, 4 serve as the shape and rate
parameter, respectively, to a Gamma distribution to form
counts wyy, 4 which serves as the rate parameter to a Pois-
son distribution and together define a NB distribution
with mean p,, 4 and dispersion 6 (see the Supplemen-
tary Information for a more detailed explanation and also
[45], Supplementary Note 3). If the user prefers to work
with a zero-inflated model, a third neural network f3
estimates the logit of the dropout rate 7, 4 for each tran-
script g in each sample m. m,, 4 is used as the parameter
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of a Bernoulli distribution that models whether a tran-
script is dropped out (therefore a zero). When combined
with the NB distribution of ¢, this results in a ZINB
distribution.

Loss is computed as a (possibly weighted) combina-
tion of the Kullback-Leibler (KL) divergence and recon-
struction error (log-likelihood of the NB or ZINB as
appropriate). A more detailed description of the neural
network with details on dropout, choice of activation lay-
ers, injection of correction variables, and optimization is
described in the Supplementary Information.

Imputation of missing transcript counts

Several experiments were carried out to test the capac-
ity of PREFFECT to self-learn or impute missing values
using synthetic or pseudo-synthetic datasets. The col-
lection D of positions (i, j) in the count matrix that were
replaced by a zero to simulate dropout was recorded.
The median relative error was computed between the
true (hidden) value and the imputed value across all such
locations (i, j):

1 X, — Xl

)
Xij

MRE(X, X) = median(; jep

where X ; is the estimated value for this count and X ;
is the observed count.

Experiments to measure batch corrections

Several experiments were carried out to investigate the
capacity of PREFFECT to adjust for batch effects. In
the first experiment, we created a synthetic dataset with
M = 1000 samples and N = 900 transcripts and simu-
lated a simple batch effect as follows. First, a sample s was
assigned to batch 0 with probability b. Otherwise, it was
assigned to batch 1. Let batch(s) denote its batch. Sec-
ond, a frequency vector w for the transcripts was gener-
ated using the stick-breaking algorithm [63]; w was used
to generate variates for all samples regardless of batch,
and a single suitably large library size L was chosen for
all samples. Transcript counts C; 4 for sample s and tran-
script g were generated according to a hierarchical model
as follows:

Cs,g ~ NB(N (ug,02),0) + batch(s) - Bernoulli(p) - N (g, 0%),

where p1y = L - wg, 0 = 1, p corresponds to the probabil-
ity a transcript is subject to the batch effect, and pp and
0% are the parameters for a normal distribution describ-
ing the batch shift. Note that the final library sizes (from
summing over all transcripts per sample) will tend to be
larger for batch 1 samples.
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Three distinct experiments were conducted as follows:

Experiment 1. Library size L =10% B = 100;
0% = 1; p = 1 implying all transcripts in batch 1 received
the adjustment. Samples were assigned to the two
batches with equal probability.

Experiment 2. As for Experiment 1 but the probability
p that an individual transcript in batch 1 would be sub-
jected to the batch effect varied from 0.5 to 1.

Experiment 3. The goal of this experiment was to test
whether important biological differences between the
samples (here represented by samples belonging to two
distinct subtypes) were not lost after adjusting for the
batch effect. Similar to Experiment 2, but two distinct
frequency vectors w, and wg were randomly gener-
ated via the stick-breaking algorithm representing two
subtypes « and 3 respectively. A sample was randomly
assigned to either subtype o or  with equal probability.
Therefore, a transcript g in sample s, 14 is equal to either
L -w, or L - wg depending on whether s was assigned to
subtype a or .

The Jensen—Shannon divergence, a symmetrized and
smoothed version of the KL divergence, is used to mea-
sure the distance between frequency distributions the
generative transcript frequencies w and the estimated
transcript frequencies &. The JSD is defined as follows:

1 1
JSD(w || @) = SKL(w || M)+ KL || M),

where M = 1(w + @) is the average, mixture distribution
and KL(-, -) is the KL divergence. To measure the change
in JSD after adjusting for the batch, we compute

A JSD(w,&,®) = JSD(w,®) — JSD(w,w),

where w is the adjustment (via the latent representation)
of &.

Using the estimated transcript frequency vectors w, the
samples were mapped to two dimensions for visualiza-
tion using UMAP.

Single-tissue PREFFECT model: sample-sample
relationships.

Given the challenges of fRNA-seq data, we sought to
incorporate additional information that could assist with
the de-noising and imputation of count data. Towards
this end, the single tissue generative model incorporates
a sample-sample adjacency matrix A : M x M (Fig. 3A,
purple). Two samples are adjacent if and only if they are
deemed sufficiently similar. Often similarity is defined by
Pearson correlation distance or another metric applied
to a subset of transcripts, but other techniques could
be used either directly with the count matrix X or some
other independent datasets (not necessarily fRNA-seq),
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opening avenues for integrating multi-omics data, clini-
cal information or other modalities. In the experiments
related to clustering with the single model, edges were
included in the graph if and only if the two samples were
of the same PAMS50 subtype.

In the single tissue generative model, the encoder pro-
cesses the count matrix X, the adjacency matrix A along-
side associated metadata K through a neural network
to project the data into a latent space Z4. The top layer
of this neural network uses a graph attention network
(GAT) [47, 52], which takes as input transcript counts
for each sample in addition to the sample-sample adja-
cency list (Fig. S3D and Supplementary Information).
The attention mechanism helps the model focus on the
most informative dependencies while minimizing the
effect of others. GAT mechanisms also facilitate hierar-
chical feature learning by aggregating information over
multiple layers and at different levels of granularity. As
before, the (log) library sizes (log L) can be allowed to
vary during training. The encoder produces an estima-
tion qo(Za, Z1| X, A,log L, K) of the true posterior dis-
tribution pg, where ® consists of all parameters of the
neural network and © represents the true parameters
underlying the data. Linear layers are applied after the
GAT to form the final latent encoding Z4 of the graph
and count matrix. The decoder reconstructs an estimate
of the count matrix X and the adjacency matrix A (Fig.
S3E, pink).

Investigating the contribution of the adjacency matrices
We sought to demonstrate that the inclusion of sample-
sample adjacencies in the single tissue model increased
performance over the simple model. Our explorations
related to imputation, clustering and network reconstruc-
tion used the breast cancer datasets from the compen-
dium. In particular, we needed to generate a (large) set
of pseudo-synthetic samples using a transcript frequency
vector w; specific to each subtype s. We began by prepar-
ing each dataset as described above and determined the
PAMS50 subtype of each sample. Next, we transformed
the raw input count matrix X to a matrix X" where

Xl = S )

’ > X

so that the resulting rows (samples) of X" correspond
to the frequency vector for all transcripts. Now for each
subtype s, we compute a vector ws which is the average
frequency of each transcript in all samples of the subtype
s. ws is then used to generate sample-specific variations
across each of the transcripts. For each subtype s, a cho-
sen library size L, and transcript specific dispersion 6,
we create N; pseudo-synthetic samples where each such
sample has a transcript count vector formed as follows:
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/~Lg = L CWs,
wi,g ~ T'(shape =0g,rate =0,/p,),
ig ~ Poisson(w;g),

The relationship between 14, w; 4, and X; 4 is a standard
way to derive variates according to a negative binomial
distribution. Here X 4, the final count for transcript g
in sample i, is distributed according to a NB distribution
with parameters mean p, and dispersion 6,. An adja-
cency matrix was formed as described above with edges
placed between two samples if and only if they are of the
same subtype.

Full PREFFECT model: integrating multiple matched tissues
The full model in PREFFECT generalizes the single
model by accepting a set of tissue-specific count matrices
XM, x@ L XT) e zM*N along with corresponding
sample-sample adjacency networks A1), AR AT)
for the T matched tissues profiled over a common set of
N transcripts (Figs. 3D, S3F). The learning procedure fits
the NB or ZINB models to each tissue via the GAT lay-
ers and adjacency matrices as in the single layer model,
but additional layers in the network combine the T latent
spaces into a single joint latent space. In this way, the
related tissue types influence the fit and therefore the
adjusted transcript count data.

Investigating performance of the full model

To investigate the performance and behavior of the
PREFFECT full model, we require at least two matched
transcript count matrices. For the purposes of this exper-
iment, we turned to a pseudo-synthetic approach that
exploits an existing dataset (Sunnybrook) in the fRNA-
seq compendium with both tumor (first matrix) and
matched stromal (second matrix) count data. In both
cases, 100 transcripts across 1000 samples were gener-
ated using the parameters learnt from the real data for
each tissue. Here sample i in the primary tumor matrix is
matched with sample i in the stromal matrix.

For the primary tumor count matrix, we assigned 250
(of 1000) samples to each of four breast cancer sub-
types. The first 50 transcripts correspond to PAMS50
genes. NB counts were generated from parameters esti-
mated for each subtype from breast cancer datasets in
the fRNA-seq compendium. The second 50 transcripts
are non-informative; the counts are simply variates from
NB(100,1) and so they should not impact clustering of
the tumor samples This gives us a set of M = 1000 sam-
ples each assigned a tumor subtype across the 50 PAM50
transcripts and 50 non-informative transcripts.

To simulate stromal subtyping schemes, we partitioned
the 1000 samples into 4 stromal subtypes (labelled o — §)
as follows:
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« if the sample was assigned the basal subtype in the
tumor samples, it randomly receives either stromal
subtype a or 8 with equal probability;

+ tumor HER2-enriched samples were assigned
stromal subtype ; and

+ tumor luminal A and B samples were both assigned
stromal subtypes .

In this (artificial) manner used for exemplary purposes,
the stromal subtypes provide greater refinement of the
tumor subtypes in one case (basal subtype), and the
tumor subtypes provide greater refinement of the stromal
subtype in one case (the J subtype is fractured into lumi-
nal A and B subtypes).

A distinct transcript frequency vector was generated
via a stick-breaking algorithm for each of the 4 stromal
subtypes as described above for our investigations of
batch corrections. The stromal count matrix consists of
the 50 PAM50 transcripts and 50 stroma-specific tran-
scripts. For the stroma, the PAM50 transcript counts are
just random variates from NB(100,1) so they are unin-
formative and should not affect clustering of the stroma
samplings. The 50 stroma-specific transcript counts are
generated using the corresponding frequency vectors
Wa, W, Wry, W5,

Training and hyper-parameter tuning

During the design and testing of PREFFECT, a large
hyper-parameter search was conducted across the fRNA-
seq compendium and pseudo-synthetic data. Our goal
was to identify good default values for a wide range of
parameters both with respect to specific values (e.g.
default latent dimensionality) and architecture (e.g. type
of activation function, number of linear layers). The ~ 25
parameters are detailed in Table S3 along with the default
value. All of these parameters can be changed by the user,
although it is often the case that only a few such param-
eters must be explored when fitting to a new dataset,
primarily learning rate, epochs, batch size, latent dimen-
sion r, and weight of the KL divergence score for expres-
sion. PREFFECT expects distinct training, validation
and test sets for learning a model with a recommended
size ratio of 6:2:2. Only the training and validation data-
sets are used during model learning. The Supplementary
Information provides a detailed description of the model
and loss functions. The online software has a series of
vignettes that aid the end-user with training models for
new datasets; a vignette is depicted in Fig. S4.

Results

Table S1 describes the path of our analyses beginning
with the characterization of fRNA-seq data, through
the construction of a series of PREFFECT models with
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increasing complexity, to the validation and exploration
of PREFFECT on contemporary fRNA-seq datasets.

FFPE-derived RNA-seq expression is well-modeled by the
negative binomial distribution

To characterize the distribution of transcript counts
obtained from whole transcriptome fRNA-seq profil-
ing, a compendium was constructed by selecting publicly
available datasets which contain a considerable num-
ber of profiles (at least 20 samples; median=93) and for
which the corresponding raw, non-normalized count
data is available. The N = 13 sets of fRNA-seq samples
vary in terms of tissue types, cell types, disease (or nor-
mal samples), age of samples, and technical variables
(Table S2). The transcripts with the highest counts tend
to be the same as those observed in bulk and scRNA-seq
studies including MALATI1, NEAT1, XIST [64] and oth-
ers listed in Fig. 1A. These extreme counts in the right
tail induce a very high standard deviation with respect to
the average count per transcript (Fig. 1B). For example,
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the mean count for MALATI in the TMBC dataset [57]
is ~ 4.4 million but the maximum observed value is 34
million. Mean trimming of the right-most 1% of extreme
observations reduced the overall standard deviation by
an order of magnitude in almost all datasets (Fig. 1A).
We note, however, that not all of the extreme observa-
tions are artifacts that can be safely trimmed. Analysis
below suggests that many high count transcripts occur in
transcripts including ERBB2 (HER2) and samples where
over-expression is expected. It should be stressed that
even after trimming, the range of counts for many tran-
scripts in fRNA-seq data remains very broad. For exam-
ple, transcript counts for the estrogen receptor 1 (ESRI1)
in the Sunnybrook fRNA-seq dataset range from just 1 to
more than 100,000.

Six different distributions were fit to the data using
the AIC as a measure of fit. A significant majority of
transcripts are best fit by the NB distribution for all
but the normal tissue samples of GSE47462 (Fig. 1C).
Because the various distributions differ in their number

8100 30
g
= 10 ‘Other transcripts greatly reducing the standard deviation. 103 4 == \Variance = Mean (Poisson) I8N
XIST, AHNAK, ACTB, NEATI, : A

g COLIAL COLIA2, COL3AL FN1 W GSE120795 25 == Variance = Mean - r
8 fona MUC2, FLNA,
5 TMSBI0, CSTS, W GSE146889 (Tumor) 500
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of parameters and the AIC contains a weak penalty for
model complexity, we repeated the analysis using the
KS D statistic, which does not adjust for model size, but
arrived at the same result (see Supplementary Informa-
tion and Fig. S1A).

Figure 1C also suggests that transcripts often prefer
the exponential distribution. However, we observed that
this preference is highly dependent on the percentage
used to trim outliers. That is, the preference for the expo-
nential fit is strongly influenced by the number of highly
expressed transcripts in the right tail (see Supplementary
Information and Fig. S1B), further highlighting the fact
that fRNA-seq data is prone to extreme measurements.

A significant fraction of transcripts have zero counts in
all of the fRNA-seq datasets (ranges from 0.1 to 0.5 with
median 0.46; Table S2). Zero-inflated extensions to dis-
tributions like the NB are often considered in such cases.
In addition to the mean p and dispersion 6 of the NB dis-
tribution, the ZINB has a third parameter 7 that controls
the probability of a so-called dropout event (a zero count
for a transcript that is not a variate from the NB). How-
ever, Fig. 1D reports very little support for the ZINB. A
direct comparison between the NB and ZINB reaffirms
that observed zero counts are almost always well-mod-
eled by the NB alone (Fig. 1D). Additional analysis in the
Supplementary Information provides evidence that this is
not due to model complexity. It is common in the context
of NB-related distributions to express the variance as a
function of the mean and the dispersion parameter 6 as
follows:

ot =p+0- 1

highlighting the fact that high values for 6 induce a large
variance in the NB distribution. This variance often
appears to be sufficient to model the observed quantity
of zero counts in fRNA-seq data, a conclusion which has
also been reached for scRNA-seq data [41]. Figure 1E
reaffirms the choice of an NB over a Poisson distribu-
tion, since the variance is observed to be greater than the
mean.

A previous fRNA-seq transformation uses a probabi-
listic model where each transcript across all samples is
decided to be modelled using either exclusively a (trun-
cated) Gaussian or zero-inflated Poisson (ZIP) [32, 33].
Across our fRNA-seq compendium, their algorithm
assigns only a small minority of all transcripts < 17% to
the ZIP; the remainder are fit to a Gaussian. We observed
very little support for the Gaussian, and found even less
support for the ZIP (Fig. 1C, third and final column,
respectively).

After fitting an N B(p, 6) to each transcript within each
dataset, the overall mean u is observed to be 710 but with
an extremely large standard deviation, ranging from 666
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to 43,713 (Table S2). We also observe a mean disper-
sion 0 of 1.47 with a large relative standard deviation of
approximately 1.5. Few transcripts have an estimated 6
below 0.01 and few transcripts have an estimated 6 above
5. An NB distribution with # < 1 is maximized at 0 with
many near-zero counts, whereas larger ¢ are maximized
strictly above 0. Many transcripts, including ERBB2/
HER?2 and ESRI, have larger values for 6 greater than 3
(Fig. 1F); these induce a flat, long NB distribution.

fRNA-seq data as a mixture of distinct technical and
biological effects

It is well-established that technical variables often have a
significant impact on distributional parameters in -omic
profiling. This includes variables such as library size,
batch number and library complexity (e.g., percent dupli-
cation and DV200). Across the fRNA-seq compendium,
library size was highly dependent on batch number in
all datasets where this information is available (one-way
ANOVA, all p < 0.001). Moreover, both the location
1 and scale 6 parameters for the fitted NB distributions
are almost always significantly different between batches
(log-likelihood-based test of the change in fit between
batch-dependent parameters). The percentage of dupli-
cate reads also differed significantly between batches
(p < 0.01 for all available datasets).

Biological variables (e.g., hormone receptor status,
proliferative index, grade in cancer studies) should of
course have a significant impact on the fRNA-seq pro-
files. To investigate how count distribution is affected, we
focused on patient subtype across the breast cancer data-
sets within the compendium. It is well established that
breast cancer samples can be partitioned into at least five
distinct subtypes at the transcriptional level. Moreover,
the expression of many genes is strongly subtype depen-
dent. PAMS50 is a commonly used classification tool that
subtypes samples according to the counts of 50 specific
transcripts for invasive [59] and in situ [65] lesions. Large
differences in fitted NB parameters were observed when
samples were stratified by the PAM50 subtype for the
vast majority of the transcripts (Figs. 2 and S2). For exam-
ple, the location parameter of the NB distribution for
estrogen receptor 1 (ESR1) is markedly higher for luminal
A (dark blue) and B (light blue) estrogen receptor positive
subtypes in comparison to all remaining estrogen recep-
tor negative subtypes; this is consistent with the original
data represented (Fig. 2A). The fitted subtype NB distri-
butions for Keratin 5 (KRT5) have the largest location
parameter for normal-like lesions (green), the subtype
where it is highest expressed according to the original
PAMS50 manuscript [59]. The NB fits for ERBB2 (HER2)
and GRBY7, two genes in the 17q12 amplicon characteris-
tic of HER2 positive tumors (pink), have location (1) and
scale parameters (f) well above zero only in the HER2
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Fig. 2 The behaviour of the breast cancer subtype PAM50 transcripts in fRNA-seq data. A Heatmap modified from [59], depicting the expression of each
of the PAM50 transcripts across the five breast cancer subtypes in the original data. Here, red and green depict over- and under-expression of the tran-
script respectively. B Histograms of transcript counts in the Sunnybrook DCIS tumor cohort for selected PAM50 genes (enlarged rows of the heatmap in
A) colored by their subtype. A NB distribution was fit for each transcript in each subtype independently after median library size adjustment and trimming

subtype (Fig. e2B). Note also that ERBB2 (HER2) counts
are at least one order of magnitude larger than all other
transcripts, and there is a large variance in counts across
the samples. Likewise, epidermal growth factor (EGFR),
a well established marker of basal-like (red) and normal-
like (green) tumors have similar NB fits in these two sub-
types. The NB distribution here is flat, which corresponds
to a high 6 as discussed earlier.

It is clear from these examples and others (Fig. S2) that
the distribution of a transcript is heavily influenced by
biological effects, shown for subtype in this case. Because
the approach from Yin et al. [32, 33] decides for each
transcript over all samples whether it is modelled with a
Gaussian or with a ZIP, it is not able in its current form
to adapt to such effects. Instead, all transcript counts will
be fit to a Gaussian, since their algorithm almost always
assigns transcripts to this component, resulting in poor
fits, especially lowly expressed genes. The mean and dis-
persion parameters of the NB distribution are far more
flexible, providing good fits to a variety of distributional
shapes (Fig. 4C).

We again do not see strong evidence for use of the
ZINB over the NB distribution with any of the PAM50

genes when samples are stratified by subtype (Fig. S2).
The need for the ZINB distribution would be clearly jus-
tified if we observed a large spike of zeros in cases where
w is well above 0. Instead, it appears that the NB distribu-
tion with a suitably high dispersion 6 is sufficient in cases
where p is close to 0. We conclude that fRNA-seq data-
sets are well-modeled by the NB distribution albeit with
large dispersion at times.

The simple PREFFECT model robustly estimates generative
parameters when dropout rates are within observed
ranges

Given the observations made above, PREFFECT was
designed to model transcript count data by fitting it to
NB or ZINB distributions, using observed transcript
counts and conditioned by sample metadata. A condi-
tional VAE is used to optimize the fits per transcript and
sample while adjusting for technical and biological effects
using a mathematical formulation (Fig. 3C) also used in
scRNA-seq frameworks (e.g. scVI [45]), although the
architecture of the model differs significantly through
extensive train/validation/test based-learning with both
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each available tissue

real and pseudo-synthetic fRNA-seq data (Figs. 3A, B, S3,
Methods, Table S3).

Using the distributional parameters from observed
fRNA-seq datasets, we generated so-called pseudo-syn-
thetic samples where we know the ground-truth counts
and overall distributions. This was repeated across a
range of values for both the 1 and 6 NB parameters
which capture the behavior of the vast majority (> 95%)
of transcripts in the fRNA-seq compendium (see Meth-
ods). The pseudo-synthetic datasets allows us to mea-
sure the capacity of the simple PREFFECT model to
recover generative parameters across a broad range of
values. Figure 4 shows that performance is near perfect
for both p (panel (A) and 6 (B) everywhere except when
0 is very small (0.01). Such small values correspond to
NB distributions with almost all zeros (top of panel C).
In total, 99% of all transcripts have a 6 larger than 0.01.
Although the pseudo-synthetic data was generated using
an NB distribution, the ZINB still accurately assessed the
parameters p and 6 (second column of panel A and B).

The elevated number of zero counts for transcripts in
fRNA-seq data motivated a study of how well PREFFECT
can impute missing values. We used a simple self-learn-
ing approach to imputation where PREFFECT replaces
masked values with the adjusted expected value from
the estimated distribution. To explore this, we again used
pseudo-synthetic data generated with an NB distribu-
tion as described above. However, now each transcript
is subjected to dropout with a randomly assigned rate
7 €U(0...0.8), producing a ZINB distribution with
known dropout locations. Not surprisingly, the per-
formance depicted in Fig. 4D-E suggests the quality of
the fits inferred by PREFFECT are overall poorer than
simulations without dropout when NB is used. How-
ever, when ZINB is used, the performance remains high
especially for larger 6 values, and decreases only for low
0, likely because the presence of many endogenous zeros
(zeros not caused by dropout) leads to an inflation in the
estimate of 7, consistent with the reduction in accuracy
observed at the top of panel F.
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Fig. 4 The ability of PREFFECT to recuperate generative parameters. NB counts were generated for N = 1000 transcripts across M = 1000 samples
across a range of parameterizations for p and 6. PREFFECT was then used to infer parameter levels under either an NB (left column) and ZINB (right col-

umn) model. Colors in the heatmap correspond to the mean relative error (MRE) between the generative parameters u (A

and 6 (B) versus their respec-

tive estimates 1 and 6.The MRE remains very low for all parameters except when € is very small. C. Examples of the effect of § on the NB distributions.
When @ is very small at 0.01, many transcripts have a zero count. D, E, F The ability of PREFFECT to recuperate generative parameters when challenged
with dropouts. The same synthetic generative methods from panels A and B are repeated but now each transcript was subjected to random dropout
(from 0 to 80% of all samples are set to 0). PREFFECT was used to infer parameters. As expected, the ZINB model is near universally better than the NB
model, where 1 (D), 0 (E) and 7 (F) have low MRE except for small dispersion 6 levels. G, H, I The performance of estimating ZINB parameters p and 6 with
random amounts of dropout where 8 = 10. G: Color is proportional to the MRE of the masked positions for each transcript (point) plotted according to
the generative parameters p and 7. H: Color represents the MRE relative to 7 and 7; and I: MRE relative to the generative f& and 0

To examine the impact of the dropout rate 7 in

parameter estimation, we constructed a second dataset
designed in a manner that it would likely contain very
few endogenous zeros by setting ;1 and 6 appropriately
(see bottom of Fig. 4C). Therefore, when we mask values
in the generated count matrix using a random dropout
rate m € U(0 .. 0.8) for each transcript, the estimate #
should be very close to , since the vast majority of zeros
are truly due to dropout. Figure 4G-I show that PREF-
FECT estimates ;o and 7 well for 7 < 0.6 but degener-
ates for higher dropout rates. None of the datasets in our
compendium had a dropout rate > 0.55.

The simple model can accurately adjust for batch effects

Generative models can be used to hypothesize how a
dataset might change as specific effector variables are
modulated. For example, in large-scale projects, samples
are prepared and profiled in batches, and this batch vari-
able can systematically affect a count matrix. It is often
necessary to adjust the batches to remove such effects

before downstream analyses. We explored the capacity of
PREFFECT to identify and ablate batch effects.

In the first experiment, counts were generated for all
samples using a family of NB distributions with location
parameters determined by a single underlying transcript
frequency vector w. The samples were then randomly
assigned to batch 0 or 1, but only counts for transcripts
in batch 1 were systematically increased to simulate the
batch effect (see Methods). As expected, after training,
samples clearly cluster by batch number when the fre-
quency vectors are computed from the observed count
matrix (UMAP, Fig. 5A). However, by shifting samples
in batch 1 towards batch 0 in the latent space, the resul-
tant adjusted count matrices no longer cluster by their
batch (Fig. 5B). Figure 5C confirms that the frequency
vectors computed from the simulation differ between
batch 0 and 1, as expected. If PREFFECT successfully fits
a good model, the difference in values between batch 0
in panel C and panel D will be marginal. The same state-
ment holds for batch 1 between panels C and D. Lastly,
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Fig. 5 Adjusting for batch effects. A PREFFECT model was derived using synthetic data with a simulated batch effect on all transcripts with a randomly
chosen subset of samples. A UMAP embedding using the frequency vector ws for each sample s obtained from the raw count data. B UMAP embedding
using the estimated frequency vectors @ after adjusting the latent space of batch 1 to batch 0. C The average fraction of all counts for each transcript
between batches in the raw synthetic data. D After training, these same fractions are retained when no adjustment is carried out. E. During inference, all
transcripts were adjusted to batch 0. F, G Correction with respect to fractional batch effect. Synthetic datasets were generated where counts for a fraction
f of the transcripts (f € {0.5,0.6, ..., 1}) in batch 1 were subjected to the effect. F The difference in the Jensen-Shannon divergence (JSD) was com-
puted between the true generative transcript frequencies w and @, and between w and the estimated frequencies after adjusting for the batch effect @.
For all fractions f, the AJSD is negative implying that the adjustment has shifted the estimated frequencies closer to the true generative distributions.
*, #%, % % % denote p < 0.05,0.01,0.001 resp. derived from a t-test of whether the AJS D always improved. The k-BET measure of cluster mixing was
always 1 (no mixing) before batch adjustment; blue color bars show k-BET after batch adjustment. G Similar to F but here samples were randomly as-
signed to either the o or 8 subtype with distinct transcript frequency vectors wq and wg respectively. Heatmaps below panels F and G visualize kBET

across UMAP-defined sample clusters pre- and post-adjustment

by shifting batch 1 samples towards batch 0 in the latent
space, batches 0 and 1 will have nearly identical fre-
quency vectors, as observed in panel E, indicating a suc-
cessful ablation of the batch effect.

The second experiment tests the ability of PREFFECT
to identify and adjust for a batch effect at different lev-
els of pervasiveness. Here, a series of PREFFECT models
were fit to a count matrix similar to the first experiment,
but only a fraction p of the transcripts in batch 1 received
the batch adjustment. We computed the difference
between two similarities: (ii) the similarity between the
generative transcript frequencies w and the estimated
frequencies @, and (i) the similarity between w and @
after adjusting for the batch effect with the latent space,
denoted . For all values of p, the batch adjustment & is
more similar to the true generative w (Fig. 5F).

The third experiment was designed to ensure that
important biological variation is retained after batch
adjustment. Figure 5G extends the previous exploration
to investigate cases where the samples differ by both their
batch and their subtype (representative of a biological
effect). To simulate this, samples were randomly assigned
(with equal probability) one of two subtypes o and 3
each with a distinct frequency vector w,, wg respectively.
Again, regardless of the pervasiveness p of the batch
effect, the adjustment increases the amount of mixing
between the two classes. This can be seen by the decrease
in the kBET scores. At the same time we observe that
the adjustment increases the degree of similarity with
the two true generative frequencies. This means that
the important biological differences are retrained since
the frequency of the transcript counts tend towards the
ground-truth generative vectors.

Lastly, we note that although the batch adjustment
capacity of PREFFECT has advantages, PREFFECT
transformed count data can also be used with other well-
established tools (e.g. ComBat-seq [66]).

The single tissue PREFFECT model improves sample
clustering

We sought to integrate additional information that could
assist with the de-noising and imputation of the count

data. Toward this end, the single tissue generative model
extends the simple PREFFECT model by incorporat-
ing a sample-sample network (Fig. 3A, purple). This is
achieved using so-called graph attention network lay-
ers, which are powerful neural network components that
assist the artificial neural network to focus attention on
the most informative components of the learning set dur-
ing training. In our experiments here, two samples are
adjacent if and only if they are deemed sufficiently simi-
lar. The exact notion of similarity can vary, providing a
convenient means to integrate complementary types and
modes of data.

We explored how the inclusion of the sample-sample
network can improve the performance of downstream
tasks, specifically sample clustering. Since available
fRNA-seq datasets are limited in size, we generated
a pseudo-synthetic dataset consisting of 200 samples
for each of the 5 breast cancer subtypes (see Methods).
Briefly, we estimated frequency vectors for PAM50 tran-
scripts for each of the five subtypes depicted in Fig. 6A,
generated a large set of pseudo-synthetic samples for
each subtype, and ensured that the resultant samples
had similar patterns of expression as the original PAM50
study (Fig. 2A). Two patient samples were made adjacent
if and only they had the same subtype.

Not surprisingly, the single-tissue model trained
with the network was able to recuperate the sub-
type-specific transcript frequency vectors w (average
JSD(w,®) = 0.016 + 0.017; Fig. 6B). Moreover, the
UMAP produces five distinct clusters that nearly per-
fectly separate samples by subtype (panel F; Silhouette
statistic 0.85). To test the contribution of the adjacency
network, we repeated the training process but this time
removed a fraction of all edges. Figure 6C depicts the
estimated frequency vectors when 80% of all edges were
removed, leaving only 20% of the edges between samples
of the same subtype. There is a noticeable decrease in the
model’s capacity to recapitulate the generative transcript
frequencies w (average JSD(w,®) = 0.041 £ 0.029). This
is reflected in the associated UMAP where each “snake-
like” cluster contains samples with different subtypes
(panel G; —0.07 Silhouette). The last experiment instead
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ated and reconstructed adjacency matrices

introduces false positives into the adjacency matrix prior
to training. Again, the capacity of the model to reca-
pitulate the w vectors is reduced but remains significant
(average JSD(w,®) =0.042 £0.052; 0.63 Silhouette;
Fig. 6D) and the resolution of the UMAP has decreased
with some HER2-enriched samples clustering with nor-
mal-like samples, and some confusion between luminal
A and B (panel H). The reconstructed networks, which
are allowed to evolve via distinct components of the VAE
(Supplementary Information), are nearly indistinguish-
able from the original input graphs (Fig. 6I-K). These
experiments show that PREFFECT is able to take advan-
tage of the network information, which in this case allows

the learner to focus attention on samples with the same
subtype and therefore transcripts with similar count
levels.

Full PREFFECT model: integrating multiple matched tissues
In many genomic-based clinical studies, matched fRNA-
seq data is also available for related tissues or conditions
in addition to the primary target tissue. For example,
in disease studies, often both the affected and matched
healthy/normal tissue from a patient is profiled. In can-
cer, the profiles of an index lesion can be complemented
by profiles of their match normal tissue, the tumor
microenvironment, and metastatic sites. The inclusion
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of multiple matched tissues can improve performance,
especially when there is significant dropout of transcript
counts. Figure 7 provides an intuition of how this infor-
mation is “borrowed” across profiles. In addition to the
count matrices, the adjacency matrices are also updated
during training to find the best fit possible (Fig. 3D and
Supplementary Information).

To investigate the benefits of multiple tissue analy-
sis, we turn once again to breast cancer as an example,
since we have access to a dataset with matched primary
tumor and stroma profiles and we know the ground truth
subtype assignments for the tumor samples. It is well-
established that breast cancer samples have both a pri-
mary tumor subtype [59, 67] and a tumor stroma subtype
(e.g., [68]). The tumor and stroma subtyping schemes are
distinct and the relationship between them appears to
be complex and is still not fully understood. Our goal is
to show that PREFFECT can use information from the
stromal samples to form better sample clusters in the pri-
mary tumor, and vice versa.

To explore this, we generated pseudo-synthetic count
matrices for both tissues as follows (see Methods for
more details). Starting with the primary tumor matrix,
samples were randomly assigned to four breast cancer
PAMS50 subtypes; in each sample 50 transcripts corre-
spond to PAM50 and the rest with random counts. Next,
for the stroma, each sample was assigned a subtype: basal
samples were randomly assigned either stromal subtype o
or 3, HER2-enriched samples were assigned stromal sub-
type 7, and luminal A and B samples were assigned stro-
mal subtype §. A distinct frequency vector was generated
for each stromal subtype and used to generate counts
for the 50 stromal genes. Random values were assigned
to the PAM50 transcripts in the secondary tissue dataset
(that is, the PAMS50 transcripts are not informative in the
stromal samples). In this two-tissue scenario, we would
expect that samples will cluster according to the four

(x)
NP(g)

Fig. 7 Neighborhood information is encoded in the adjacency networks.
The target transcript g; in the primary tissue (blue) is influenced by the
counts from its neighbouring samples in the primary tissue, but also by
the expression of g; in the other available tissues 2 (green) ... T (pink),
which are in turn influenced by their neighbours in the sample-sample
network
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tumor subtypes when the tumor count matrix is used,
but a and 8 samples would not separate. Conversely, we
expect that the samples will cluster by the four stromal
subtypes when the stromal count matrix is used, but the
luminal A and B samples would not separate.

Figure 8A confirms this hypothesis regarding sepa-
ration of the luminal A and B subtypes when using the
tumor counts. Interestingly, in the stroma-related Fig. 8B,
we also observe the luminal A and B samples separated.
We hypothesize that this unexpected result is due to
backpropagation during model training, which trans-
fers information from the model of tumor counts to the
model of stromal counts. Regardless, when the com-
bined latent space is used to cluster the samples, both
the tumor luminal A and B subtypes and the stromal «
and 3 subtypes are separated (Fig. 8C). This shows that
the underlying artificial neural network is using informa-
tion from both tissues when deciding the relationship
between samples from both tissues.

PREFFECT models with contemporary fRNA-seq datasets

We examined the capacity of PREFFECT to fit good
models with available fRNA-seq datasets, and tested
whether the resultant models aided in downstream anal-
ysis, specifically sample clustering. Simple models were
built for each dataset in the compendium, but our anal-
ysis below focuses once again on the six breast cancer-
related datasets to investigate performance. Here, models
were restricted to N = 776 genes from the well-studied
pan-breast cancer BC360 panel (NanoString Inc.), since
we can expect that these transcripts will vary significantly
across the datasets. Initially, hierarchical clustering was
applied to the data instead of applying PREFFECT (log-
transform mean trimming 1% with variance stabiliz-
ing transformation). We observe a broad range of count
values with many zero counts (represented by white).
Although clusters are enriched for same-subtype sam-
ples (especially basal), many subtypes (especially luminal
B) are diffuse across the clustering (Fig. 9A for dataset
GSE167977). When the inferred transcript frequencies @
are used instead, the expression becomes more polarized
away from 0, presumably due to imputation of missing
values. Panel B depicts the inferred transcript frequen-
cies @ using the same transcript and sample ordering as
panel A for comparison purposes. When the samples and
transcripts are re-clustered using the inferred transcript
frequencies, we see much more homogeneous clusters
for every subtype with the exception of the basal subtype
which was already homogeneous (panel C). The adjusted
rand index (ARI) increases from 0.32 for enrichment
of subtypes in the sample clusters of panel A to 0.61 in
panel C. Figure S5 depicts the hierarchical clustering of
samples and subtype assignment analogous to panel A
using only a VST (without PREFFECT). It has a slightly
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poorer performance than the non-PREFFECT clustering
of panel A with an ARI of 0.28.

Discussion

FFPE material is an important but under-utilized
resource of well-preserved samples for both human
health and disease. The profiles obtained from applying
next generation RNA sequencing to FFPE material are
noisy, prone to extreme measurements and contain a
high zero count for transcripts (nearly one half at 0.45).
The problematic nature of fRNA-seq underscores the
importance of using the appropriate normalization and
transformation as a first step in any analysis. Most stud-
ies to date have relied on techniques from bulk RNA-seq
which often focus on fresh frozen tissues, cell lines or
other forms of largely intact material. However, variance
stabilization transformations are inoptimal for profiles
with elevated zero counts. A typical scRNA-seq study,
which shares some of the same challenges as fRNA-seq,
has the luxury of orders of magnitude more cells than the
number of samples in most fRNA-seq studies and it has a
more restricted transcript count range.

Our analysis of the fRNA-seq compendium suggests
that the vast majority of transcript counts are well-mod-
eled by an NB distribution. This is consistent with other
types of RNA-seq data, although both the mean p and
dispersion # parameters vary considerably compared to
other types of RNA-seq data including bulk and single-
cell profiling. Although there is very considerable drop-
out, the NB is still able to model transcript counts well
and we observed little support for use of the zero inflated
extension (ZINB) with additional dropout parameter 7.
The NB distribution is well-established in expression pro-
filing and serves central roles in many downstream appli-
cations including differential expression (e.g. DEseq2).
We do not observe support for a previous effort (MIX-
norm) which assumes that each transcript follows either
a zero-inflated Poisson or a truncated Gaussian.

We focused here on breast cancer datasets and breast
cancer subtype in our analyses. This restricted focus
allowed us to comment on the performance of PREF-
FECT, since the behavior of many transcripts central to
determining the subtype of a tumor is extremely well-
characterized including the 50 transcripts of PAM50. In
this sense, breast cancer subtype provides us with a gold-
standard or “ground truth” to judge improvements in
downstream applications post-PREFFECT.

Generative models allow observed data to be decom-
posed or “factorized” by such variables, whether they
are known or unknown. PREFFECT is a series of gen-
erative models based on conditional VAEs to impute
and factorize observed transcript count data to de-noise
and adjust for both technical and biological variation.
Unlike a previous fRNA-seq model [32, 33], PREFFECT
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has the capacity to modulate the distribution param-
eters in response to the state of biological variables such
as patient subtype, an important capacity given the
observed subtype-specific behavior of many transcripts.
PREFFECT offers a number of alternatives to adjust for
batch effect, and the PREFFECT adjusted count matrices
can be easily used with other batch correction tools such
as ComBat-seq [66].

We showed that PREFFECT can accurately infer gener-
ative parameters and accurately impute missing values for
the range of values observed in the real data. Although
PREFFECT performed well when evaluated on a test
dataset with samples not seen during training, broader
experimentation beyond our current compendium is still
required. Imputation can be problematic, introducing
for example bias, false correlations, and causing p-value
inflation [69]. In short, imputation and other features
facilitated by generative modelling are powerful tools for
discovery in clinical FFPE cohorts, but additional due dil-
igence is necessary if clinical diagnostics were to directly
rely on the inferred information.

This single tissue model uses graph attention networks
(GATSs) to assist the learner to attend to the most influen-
tial neighbors (samples) from which infer distributional
properties. We observed how such imputation can lead
to better patient subtyping with breast cancer datasets. In
general, the attention networks can be designed to inte-
grate diverse types and modes of data into analysis. The
full model allows for multiple matched tissues from the
same patient sample to be integrated. To the best of our
knowledge, this is the first generative tool to incorporate
multiple patient-matched tissues and graph attention.

The vast majority of available fRNA-seq datasets cur-
rently are of moderate size with a median of 93 samples
in our compendium, a value that is four orders of mag-
nitude lower than some datasets available for scRNA-
seq. Generative approaches such as PREFFECT, which
provide a means to ablate nuisance technical parameters
and better capture true biological signal, would certainly
benefit from larger fRNA-seq datasets, given the degree
of variability and extreme measurements, especially in
contexts such as cancer where we know that samples are
affected by strong transcriptional programs (e.g., estro-
gen receptor status in breast cancer and other subtype-
related programs).

The undersized nature of current fRNA-seq datasets
may partially explain why FFPE-based studies remain
very challenging. Although PREFFECT is able to fit mod-
els to existing datasets, training required multiple runs
with different parameter settings and we often had to
make use of pseudo-synthetic extensions of these data-
sets. This can introduce subtle biases into studies. We
conjecture that PREFFECT would benefit greatly from
much larger sample sizes and result in more accurate
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downstream analyses (e.g. differential expression, sur-
vival analyses, clustering).

Conclusions

RNA extracted from FFPE materials suffers from deg-
radation, fragmentation, and chemical modifications
that pose significant challenges for molecular analyses.
Transformation and normalization of raw transcriptional
data is a critical step that affects all types of downstream
analyses needed for biomarker discovery and molecular
characterizations. We developed PREFFECT to char-
acterize and de-noise fRNA-seq data to enable more
precise downstream analyses. such as differential expres-
sion, survival analysis, and clustering. PREFFECT per-
formance was shown to be improved when information
from multiple tissues and associated samples are lever-
aged to inform the graph attention mechanisms. PREF-
FECT is available as open source software and can be
easily modified and extended. Our hope is that it serves
as a central point for the community to reason about
large-scale fRNA-seq studies.
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