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ABSTRACT

Formalin-fixed paraffin embedded (FFPE) samples are challenging to profile using existing high-
throughput sequencing technologies, including RNA-seq. This difficulty primarily arises from the
degradation of nucleic acids, a problem that becomes particularly acute with samples stored for
extended periods. FFPE-derived RNA-seq (fRNA-seq) data have a high rate of transcript dropout, a
property shared with single cell RNA-seq. Transcript counts also have high variance and are prone to
extreme values. We introduce the PaRaffin Embedded Formalin-FixEd Cleaning Tool (PREFFECT),
a probabilistic framework for the analysis of fRNA-seq data. PREFFECT uses generative models to
fit distributions to observed expression counts while adjusting for technical and biological variables.
The framework can exploit multiple expression profiles generated from matched tissues for a single
sample (e.g., a tumor and morphologically normal tissue) in order to stabilize profiles and impute
missing counts. PREFFECT can also leverage sample-sample adjacency networks that assist graph
attention mechanisms to identify the most informative correlations in the data. We demonstrate how
PREFFECT uses this information to more accurately compute downstream analyses such as sample
clustering in several datasets.

Keywords formalin fixed paraffin embedded · RNA-sequencing · generative modeling · graph attention networks
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Introduction

Formalin-Fixed Paraffin Embedded (FFPE) material has long been used in histopathology to store samples in a manner
which preserves cellular structure and tissue morphology. The use of FFPE blocks for immunohistochemistry has been
used in diagnostic pathology since 1991 [1]. Moreover, FFPE material is a significant resource for retrospective clinical
research and provides utility in prospective studies, potentially eliminating the need for the collection of fresh frozen
specimens. The development of antigen retrieval techniques for extracting nucleic acids and proteins has broadened its
range of applications to include, for example, Western blot analyses, mass spectrometry, and PCR. Its ease of storage
and cost-effectiveness has enabled the cataloging of the pathology of health and disease [2] and several hundred million
archival FFPE samples exist worldwide [3].

FFPE-harvested material can be of sufficient size and quality for use in modern -omic projects [4–8] including RNA-
seq [9–16], which is the primary focus of our effort here. The use of these technologies, however, presents significant
challenges due to technical artifacts that arise due to the preparation and storage of the material. For example, when the
tissue is fixed with formalin, methylene bridges can form between amino groups, altering the structure of nucleic acids
and proteins by adding reactive groups [17], resulting in fragmentation and mutations [18]. The dehydration process
can cause denaturation of nucleic acids and proteins, including the loss of disulphide and hydrophobic (for proteins)
bridges, and hydrogen bonds that maintain secondary and tertiary structure. RNA stability may be greatly reduced
after renaturation. Heat, modulation of pH levels and endogenous enzymes (e.g., nucleases) during de-crosslinking can
cause further nucleic acid damage particularly to labile RNA [19]. The rate of degradation of nucleic acids is dependent
on time, the fixation process used, and storage conditions [20–22]. Extraction, which requires methods to generate
thin sections of tissue for staining or tissue ribbons for nucleic acid extraction, also causes damage through physical
shearing of the nucleic acids and oxidative damage due to the use of, for example, phenols. Hydrolytic deamination can
occur during several of the steps described above and can result in the conversion of cytosine into uracil [15, 23, 24]
or guanine to adenine [25]. NGS-based studies of FFPE material consistently identify a significantly higher mutation
rate compared to fresh frozen tissue [25–27] and measures of RNA quality (e.g. RNA integrity number, DV200) are
significantly lower for FFPE-derived material compared to fresh frozen tissue [28].

The quality of FFPE-harvested material has improved due to advancements in protocols for nucleic acid extraction,
sequencing preparation, and bioinformatic analyses [4, 16, 29–31]. Comparisons between fresh frozen and FFPE-
derived tissue regardless of extraction and sequencing preparation methods have shown that many transcripts have
zero counts in the FFPE RNA-seq (fRNA-seq) profiles; these zero values are likely due to technical problems and
do not represent a true biological expression level [4, 8, 27]. Such observations underscore the need for specialized
normalization/de-noising methods for fRNA-seq profiles such as those proposed by Yin and colleagues [32, 33] where
count data is fit to a two-component model comprising a truncated normal distribution (for expressed transcripts) and a
zero-inflated Poisson distribution (for non-expressed transcripts). Efforts to precisely characterize the distributional
properties of fRNA-seq profiles nevertheless lag significantly behind other transcriptome profiling areas, including
single cell RNA-seq (scRNA-seq) where high dropout rates are also observed.

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2025. ; https://doi.org/10.1101/2025.02.21.639356doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.21.639356
http://creativecommons.org/licenses/by/4.0/


PARAFFIN EMBEDDED FORMALIN FIXED CLEANING TOOL (PREFFECT) - FEBRUARY 21, 2025

This effort starts with investigating the distributional qualities of the fRNA-seq data. In particular, we examine some
of the underlying technical and biological variables affecting transcript count data and provide evidence that it is
well-modeled by the negative binomial (NB) distribution, a property shared with bulk and scRNA-seq data. There
are, however, challenges unique to fRNA-seq data including observations that transcript counts are sometimes four
orders of magnitude greater than scRNA-seq and with very high variability and dispersion. Moreover, the relatively
small sample size in FFPE studies makes fRNA-seq analysis potentially an even greater challenge than scRNA-seq:
the estimated 1500 fRNA-seq datasets in international repositories (e.g., ENA, SRA, dbGaP) typically contain on
the order of 102 samples, while most scRNA-seq studies contain on the order of 104 − 106 samples. In response to
these challenges, we introduce the PaRaffin Embedded Formalin-FixEd Cleaning Tool (PREFFECT) to provide a
probabilistic model for fRNA-seq data. PREFFECT uses generative models to re-express observed transcript counts
using either an NB distribution or a zero-inflated extension alongside metadata corresponding to known technical and
biological effects in the data. Similar approaches have been explored in the context of scRNA-seq data analysis [16,
34–51]. PREFFECT contains a series of conditional variational autoencoders (cVAEs) which allow multiple tissues to
be considered simultaneously in addition to graph attention mechanisms [47, 52] which assist the learner to borrow
information across samples and tissues. The goal is to build latent spaces that factorize expression profiles into
their biological and technical variables, allowing for the ablation of nuisance parameters and tempering of extreme
measurements, thereby providing a more refined means to perform common downstream analyses including clustering,
differential expression, and survival analyses. We explore the use of PREFFECT with several publicly available datasets.

Results

FFPE-derived RNA-seq expression is well-modeled by the negative binomial distribution.

To characterize the distribution of transcript counts obtained from whole transcriptome fRNA-seq profiling, a com-
pendium was constructed by selecting publicly available datasets which contain a considerable number of profiles
(≥ 20) and for which the corresponding raw, non-normalized count data is available. The N = 13 sets of fRNA-seq
samples vary in terms of tissue types, cell types, disease (or normal samples), age of samples, and technical variables
(Supplementary Table S1). The transcripts with the highest counts tend to be the same as those observed in scRNA-seq
studies including MALAT1, NEAT1, XIST [53] and others listed in Figure 1A. These extreme counts in the right tail
induce a very high standard deviation with respect to the average count per transcript (Figure 1B). For example, the
mean count for MALAT1 in the TMBC dataset [54] is ∼ 4.4 million but the maximum observed value is 34 million.
Mean trimming of the right-most 1% of extreme observations reduce the overall standard deviation by an order of
magnitude in almost all datasets (Figure 1A). However, it should be stressed that even after trimming, the range of
counts for many transcripts in fRNA-seq data remains very broad. For example, transcript counts for the estrogen
receptor 1 (ESR1) in the Sunnybrook fRNA-seq dataset range from just 1 to more than 100, 000.

Six different distributions were fit to the data (Methods 2.2) using the Akaike information criterion (AIC) as a measure
of fit. A significant majority of transcripts are best fit by the negative binomial (NB) distribution for all but the normal
tissue samples of GSE47462 (Figure 1D). Because the various distributions differ in their number of parameters and
the AIC contains a weak penalty for model complexity, we repeated the analysis using the Kolmogorov-Smirnov D
statistic, which does not adjust for model size, but arrived at the same result (Supplementary Information 3).

Figure 1D also suggests that transcripts often prefer the exponential distribution. However, we observed that this
preference is highly dependent on the percentage used to trim outliers. That is, the preference for the exponential fit is
strongly influenced by the number of highly expressed transcripts in the right tail (Supplementary Figure S1B), further
highlighting the fact that fRNA-seq data is prone to extreme measurements.

A significant fraction of transcripts have zero counts in all of the fRNA-seq datasets (ranges from 0.1 to 0.5 with
median 0.46; Supplementary Table S1). Zero-inflated (ZI) extensions to distributions like the NB are often considered
in such cases. In addition to the mean µ and dispersion θ of the NB distribution, the ZINB has a third parameter π
that controls the probability of a so-called dropout event (a zero count for a transcript that is not a variate from the
NB). However, Figure 1D reports very little support for the ZINB. A direct comparison between the NB and ZINB
reaffirms that observed 0 counts are almost always well-modeled by the NB alone (Figure 1E). Additional analysis in
the Supplementary Information provides evidence that this is not due to model complexity. It is common in the context
of NB-related distributions to express the variance as a function of the mean and the dispersion parameter θ as follows:

σ2 = µ+ θ · µ2,

highlighting the fact that high values for θ induce a large variance in the NB distribution. This variance often appears to
be sufficient to model the observed quantity of 0 counts in fRNA-seq data, a conclusion which has also been reached
for scRNA-seq data [41]. Figure 1E reaffirms the choice of an NB over a Poisson distribution, since the variance is
observed to be greater than the mean.
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A B
Other transcripts greatly reducing the standard deviation:
    XIST, AHNAK, ACTB, NEAT1, 
    COL1A1, COL1A2, COL3A1, FN1 
    IGHG1, IGHG2, MUC2, FLNA, 
    EEF1A1, EEF2, TMSB10, CST3, 
    RPS11, SRRM2, MACF1, PLEC, LRP1
    RN7SL1, RN7SL2, RN7SK, 
    MT-CO1, MT-RNR2

MALAT1

C F

E

D

x106

Figure 1: Distributional properties of fRNA-seq data. A. For each dataset in our compendium, transcripts were ordered
from highest to lowest count. Depicted here is the number of highest transcripts removed from each dataset versus the
reduction in the standard deviation. MALAT1, NEAT1, XIST, COL1A1/2, MT- mitochondrial and RN- ribosomal genes
are highly and ubiquitously have many reads likely due to their large size. The standard deviation drops by an order
of magnitude after the highest 5 transcripts are removed. B. Histogram of the (log) mean count for transcripts in the
GSE209998 dataset. Note the extreme outliers > 105 counts. C. For each dataset (row), the fraction of all transcripts
with the best fit by distribution (column). The NB distribution has the highest frequency for all but GSE47462. E. The
vast majority of transcripts are better fit by the NB than the ZINB under the AIC criterion. E. Hexagonal heatmap of
the log mean versus the log variance of each transcripts in GSE209998. The green line indicates the trend if variance
equaled the mean, while the red line indicates the trend for a quadratic mean-variance relationship. F. Distribution for
estimated dispersion θ with dataset GSE47462.

After fitting an NB(µ, θ) to each transcript within each dataset, the overall mean µ is observed to be 710 but with an
extremely large standard deviation, ranging from 666 to 43, 713 (Supplementary Table S1). We also observe a mean
dispersion θ of 1.47 with a large relative standard deviation of approximately 1.5. Few transcripts have an estimated θ
below 0.01 and few transcripts have an estimated θ above 5. An NB distribution with θ < 1 is maximized at 0 with
many near-zero counts, whereas larger θ are maximized strictly above 0 (see Figure 4C). Many transcripts, including
ERBB2/HER2 and ESR1, have larger values for θ greater than 3 (Figure 1F); these induce a flat, long NB distribution.

fRNA-seq data as a mixture of distinct technical and biological effects.

It is well-established that technical variables often have a significant impact on distributional parameters in -omic
profiling. This includes variables such as library size, batch number and library complexity (e.g., percent duplication and
DV200). Across the fRNA-seq compendium, library size was highly dependent on batch number in all datasets where
this information is available (one-way ANOVA, all p < 0.001). Moreover, both the location µ and scale θ parameters
for the fitted NB distributions are almost always significantly different between batches (log-likelihood-based test of
the change in fit between batch-dependent parameters). The percentage of duplicate reads also differed significantly
between batches (p < 0.01 for all available datasets).

Biological variables (e.g., hormone receptor status, proliferative index, grade in cancer studies) should of course have a
significant impact on the fRNA-seq profiles. To investigate how count distribution is affected, we focused on patient
subtype across the breast cancer datasets within the compendium. It is well established that breast cancer samples can
be partitioned into at least five distinct subtypes at the transcriptional level. PAM50 is a commonly used classification
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A                                                     B

Figure 2: A. Heatmap modified from [55], depicting the expression of each of the PAM50 transcripts across the five
breast cancer subtypes in the original data. Here, red and green depict over- and under-expression of the transcript
respectively. B. Histograms of transcript counts in the Sunnybrook DCIS tumor cohort for selected PAM50 genes
(enlarged rows of the heatmap in A) colored by their subtype. A NB distribution was fit for each transcript in each
subtype independently after median library size adjustment and trimming.

tool that subtypes samples according to the counts of 50 specific transcripts for invasive [55] and in situ [56] lesions.
Large differences in fitted NB parameters were observed when samples were stratified by the PAM50 subtype for the
vast majority of the transcripts (Figure 2 and also Supplementary Figure S2). For example, the location parameter of the
NB distribution for estrogen receptor 1 (ESR1) is markedly higher for luminal A (dark blue) and B (light blue) estrogen
receptor positive subtypes in comparison to all remaining estrogen receptor negative subtypes; this is consistent with
the original data represented Figure 2A. The fitted subtype NB distributions for Keratin 5 (KRT5) have the largest
location parameter for normal-like lesions (green), the subtype where it is highest expressed according to the original
PAM50 manuscript [55]. The NB fits for ERBB2 (HER2) and GRB7, two genes in the 17q12 amplicon characteristic
of HER2 positive tumors (pink), have location (µ) and scale parameters (θ) well above zero only in the Her2 subtype.
Note also that ERBB2 (HER2) counts are at least one order of magnitude larger than all other transcripts, and there is a
large variance in counts across the samples. Likewise, epidermal growth factor (EGFR), a well established marker of
basal-like (red) and normal-like (green) tumors have similar NB fits in these two subtypes. The NB distribution here is
flat, which corresponds to a high θ as discussed in earlier.

We again do not see strong evidence for use of the ZINB over the NB distribution with any of the PAM50 genes
when samples are stratified by subtype (Supplementary Figure S2). The need for the ZINB distribution would be
clearly justified if we observed a large spike of zeros in cases where µ is well above 0. Instead, it appears that the NB
distribution with a suitably high dispersion θ is sufficient in cases where µ is close to 0. We conclude that fRNA-seq
datasets are well-modeled by the NB distribution albeit with large dispersion at times.

The core generative model.

PREFFECT is a collection of cVAEs designed to model transcript count data by fitting it to NB or ZINB distributions.
Count matrices are expressed as a mixture of different technical and biological effects, allowing for the adjustment of
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data to account for factors such as batch number, measurement variability, dropout events, and extreme measurements.
PREFFECT offers several generative models (Table 1), each accommodating different types of data during the fitting
procedure. All models require an unadjusted count matrix X ∈ ZM×N>0 for the target tissue, where M is the number
of samples and N is the number of transcripts, and can accommodate metadata (e.g., batch number, DV200, percent
duplicates), and patient clinicopathological variables (e.g., grade, stage of a tumor). PREFFECT uses these variables
to adjust the count data and for conditional inference [57] to improve the quality and interpretability of a fRNA-seq
dataset.

Name Tissues Adjacency
networks Description

simple only one target no Generative model can use sample metadata.
single only one target yes GAT layer exploits sample-sample correlations.

full multiple yes Borrows information across tissues.

Table 1: Types of PREFFECT models.

The structure of the simple model is similar to those used in scRNA-seq contexts, e.g., Lopez and colleagues [45].
The encoder produces an estimation qΦ of the true posterior pΘ, where Φ and Θ are the sets of all relevant underlying
parameters for q (i.e., weights in the neural network) and p (i.e., parameters of the underlying true distribution). qΦ

consists of several conditional VAEs including an (optional) encoder qLΦ, for the observed (log-)library sizes of the
samples allowing the library size to vary during model fitting (Figure 3A, green).

The first decoder maps the latent spaces to fitted count matrices under an NB or ZINB distribution via three neural
networks f1, f2, f3 (Figure 3C). Neural network f1 estimates the fraction of reads for each transcript in each sample
cm,g along with an inverse dispersion value θ. Neural network f2 estimates the library size lm of each sample m. θ
and θ/lm · cm,g serve as the shape and rate parameter, respectively, to a Gamma distribution to form counts ωm,g
which serves as the rate parameter to a Poisson distribution and together define a NB distribution with mean µm,g and
dispersion θ (see 4.1 for a more detailed explanation and also [45], Supplementary Note 3). If the user prefers to work
with a zero-inflated model, a third neural network f3 estimates the logit of the dropout rate πm,g for each transcript g in
each sample m. πm,g is used as the parameter of a Bernoulli distribution that models whether a transcript is observed or
not. When combined with the NB distribution of cmg , this results in a ZINB distribution (Figure 3, red).

Loss is computed as a (possibly weighted) combination of the Kullback-Leibler (KL) divergence and reconstruction
error (log-likelihood of the NB or ZINB as appropriate). A more detailed description of the neural network with
details on dropout, choice of activation layers, injection of correction variables, and optimization is described in the
Supplementary Methods 4.2.

The simple model robustly estimates generative parameters when dropout rates are within observed ranges.

We constructed synthetic count data that was generated in a manner that simulates the distributional properties of
observed fRNA-seq datasets to explore the capacity of the simple model to recover generative parameters. Transcript
count matrices were generated with a range values for the NB parameters µ and θ which captures the behavior of the
vast majority (> 95%) of transcripts across the fRNA-seq compendium (Methods 2.3). Figure 4 shows that performance
is near perfect for both µ (panel A) and θ (B) everywhere except when θ is very small (0.01). This corresponds to an
NB distribution with almost all zeros (top of panel C), and is smaller than the value of θ for 99% of transcripts across
the fRNA-seq compendium. Although the synthetic data was generated here using an NB distribution, the ZINB still
accurately assessed the parameters µ and θ (second column of A and B).

The elevated number of zero counts for transcripts in fRNA-seq data motivated a study of how well PREFFECT can
impute missing values. We used a simple self-learning approach to imputation where PREFFECT replaces masked
values with the expected value from the estimated distribution. To explore this, we again used synthetic data generated
with an NB distribution in the same parameter space described above. However, now each transcript is subjected to
dropout with a randomly assigned rate π ∈ U(0 . . . 0.8), producing a ZINB distribution with known dropout locations.
Not surprisingly, the performance depicted in Figure 4D-E suggests the quality of the fits inferred by PREFFECT
are overall poorer than simulations without dropout when the NB is used. However, when the ZINB is used, the
performance remains high especially for larger θ values, and decreases only for low θ, likely because the presence of
many endogenous zeros (zeros not caused by dropout) leads to an inflation in the estimate of π̂.

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2025. ; https://doi.org/10.1101/2025.02.21.639356doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.21.639356
http://creativecommons.org/licenses/by/4.0/


PARAFFIN EMBEDDED FORMALIN FIXED CLEANING TOOL (PREFFECT) - FEBRUARY 21, 2025

Zm~ N(0,I)                Km

lm ~ LogNormal(f2(𝜇m, σ2
m))
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Figure 3: Overview of PREFFECT. A. The simple encoder consists of only the white boxes (count matrix and correction
variables). The single encoder integrates the sample-sample adjacency graph with attention mechanisms (purple boxes).
B. The single decoder extends the simple decoder with multiple decoder layers that allow integration of the adjacency
information. If a ZINB is the desired distribution, the decoder also estimates a dropout rate π denoted in red. C.
The relationships between all variables from the underlying statistical model. D. The full model combines one single
encoder model for each available tissue.

To better investigate the role of the dropout rate π in parameter estimation, we constructed a new synthetic dataset
where each transcript count is generated according to

NB(µ ∼ logNormal(100, 1), θ = 10),

a choice of parameters that is unlikely to produce many endogenous zeros. If we mask values in this generated count
matrix using a random dropout rate π ∈ U(0 .. 0.8) for each transcript, the estimate π̂ should be very close to π, since
the vast majority of zeros are truly due to dropout. Figure 4G-I show that PREFFECT estimates µ and π well for
π < 0.6 but degenerates for higher dropout rates. None of the datasets in our compendium had a dropout rate ≥ 0.55.
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D E FA B C

G H I

Figure 4: The ability of PREFFECT to recuperate generative parameters. NB counts were generated for N = 1, 000
transcripts across M = 1, 000 samples across a range of parameterizations for µ and θ. PREFFECT was then used
to infer parameter levels under either an NB (left column) and ZINB (right column) model. Colors in the heatmap
correspond to the mean relative error (MRE) between the generative parameters µ (A) and θ (B) versus their respective
estimates µ̂ and θ̂. The MRE remains very low for all parameters except when θ is very small. C. Examples of the
effect of θ on the NB distributions. When θ is very small at 0.01, many transcripts have a 0 count. D, E, F. The ability
of PREFFECT to recuperate generative parameters when challenged with dropouts. The same synthetic generative
methods from panels A and B are repeated but now each transcript was subjected to random dropout (from 0 to 80% of
all samples are set to 0). PREFFECT was used to infer parameters. As expected, the ZINB model is near universally
better than the NB model, where µ (D), θ (E) and π (F) have low MRE except for small dispersion θ levels. G, H, I.
The performance of estimating ZINB parameters µ and θ with random amounts of dropout where θ = 10. G: Color
is proportional to the MRE of the masked positions for each transcript (point) plotted according to the generative
parameters µ and π. H: Color represents the MRE relative to π and π̂; and I: MRE relative to the generative µ̂ and θ̂.

Adjusting for batch effects

Especially in large-scale projects, technical limitations require that samples be prepared and profiled in batches.
Batch-based profiling can introduce significant systematic effects that should be corrected for in order to ensure that
downstream analyses are not unduly negatively affected. We explored the capacity of PREFFECT to identify and ablate
batch effects.

In the first experiment, counts were generated for all samples using a family of NB distributions with location parameters
determined by a single underlying transcript frequency vector ω. The samples were then randomly assigned to batch 0
or 1, but only counts for transcripts in batch 1 were systematically increased to simulate the batch effect (Methods 2.6).
As expected, after training a simple PREFFECT model, samples clearly cluster by batch number when the frequency
vectors are computed from the observed count matrix (UMAP, Figure 5A). However, by shifting samples in batch
1 towards batch 0 in the latent space, the resultant adjusted count matrices no longer cluster by their batch (Figure
5B). Figure 5C confirms that the frequency vectors computed from the simulation differ between batch 0 and 1, as
expected. If PREFFECT successfully fits a good model, the difference in values between batch 0 in panel C and panel
D will be marginal. The same statement holds for batch 1 between panels C and D. Lastly, by shifting batch 1 samples
towards batch 0 in the latent space, batches 0 and 1 will have nearly identical frequency vectors, as observed in panel E,
indicating a successful ablation of the batch effect.
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Batch ID

Batch:            0                       1                                     0                   1                                  0                     1 

      Fraction of counts: Generated                          PREFFECT model                             Adjusted to batch 0C                                             D                                    E

F                                                                G

Figure 5: Adjusting for batch effects. A PREFFECT model was derived using synthetic data with a simulated batch
effect on all transcripts with a randomly chosen subset of samples. A. UMAP embedding using the frequency vector ωs
for each sample s obtained from the raw count data. B. UMAP embedding using the estimated frequency vectors ω̂s
after adjusting the latent space of batch 1 to batch 0. C. The average fraction of all counts for each transcript between
batches in the raw synthetic data. D. After training, these same fractions are retained when no adjustment is carried out.
E. During inference, all transcripts were adjusted to batch 0. F, G. Correction with respect to fractional batch effect.
Synthetic datasets were generated where counts for a fraction f of the transcripts (f ∈ {0.5, 0.6, . . . , 1}) in batch 1
were subjected to the effect. F. The difference in the Jensen-Shannon divergence (JSD) was computed between the
true generative transcript frequencies ω and ω̂, and between ω and the estimated frequencies after adjusting for the
batch effect ω̄. For all fractions f , this difference is negative implying that the adjustment has shifted the estimated
frequencies closer to the true generative distributions. G. Similar to F but here samples were randomly assigned to
either the α or β subtype with distinct transcript frequency vectors ωα and ωβ respectively.
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The second experiment tests the ability of PREFFECT to identify and adjust for a batch effect at different levels of
pervasiveness. Here, a series of PREFFECT models were fit to a count matrix similar to the first experiment, but only
a fraction f of the transcripts in batch 1 received the batch adjustment. We computed the difference between two
similarities: (ii) the similarity between the generative transcript frequencies ω and the estimated frequencies ω̂, and (i)
the similarity between ω and ω̂ after adjusting for the batch effect with the latent space, denoted ω̄. For all values of f ,
the batch adjustment ω̄ is more similar to the true generative ω (Figure 5F).

The third experiment depicted in Figure 5G extends the previous exploration to investigate cases where the samples may
differ by both their batch and other effects, such as, for example, their subtype. To simulate this, samples were randomly
assigned (with equal probability) one of two subtypes α and β each with a distinct frequency vector ωα, ωβ respectively.
Again, regardless of the pervasiveness f of the batch effect, the adjustment reduces the degree of dissimilarity with the
two true generative frequencies, although the improvements were somewhat reduced.

Single tissue generative model: borrowing neighborhood information

Since fRNA-seq data has considerably high dropout rates and is prone to extreme measurements, we sought to
incorporate additional information that could assist with the de-noising and imputation of count data. Toward this
end, the so-called single tissue generative model incorporates a sample-sample correlation network represented as a
M ×M matrix A. Two samples are adjacency if and only if they are deemed sufficiently “similar”. Often similarity
is defined by Pearson correlation distance or another metric applied to a subset of transcripts, but other techniques
could be used either directly with the count matrix X , or some other independent datasets (not necessarily fRNA-seq),
opening avenues for integrating multi-omics data, clinical information or other modalities.

In the single tissue generative model, the encoder processes the count matrix X , the adjacency matrix A alongside
associated metadata K through a neural network to project the data into a latent space ZA. The top layer of this neural
network uses a graph attention network (GAT) [47, 52], which takes as input transcript counts for each sample in addition
to the sample-sample adjacency list (Figure 3A, purple). The attention mechanism helps the model focus on the most
informative dependencies while minimizing the effect of others. GAT mechanisms also facilitate hierarchical feature
learning by aggregating information over multiple layers and at different levels of granularity. As before, the (log) library
sizes (log L) can be allowed to vary during training. The encoder produces an estimation qΦ(ZA, Zl|X,A, log L,K)
of the true posterior distribution pΘ, where Φ consists of all parameters of the neural network and Θ represents the true
parameters underlying the data. Linear layers are applied after the GAT to form the final latent encoding ZA of the
graph and count matrix. The decoder reconstructs an estimate of the count matrix X and the adjacency matrix A.

The single tissue generative model improves sample clustering

We explored how the inclusion of the adjacency matrix could improve performance of downstream tasks, specifically
sample clustering. Since available fRNA-seq datasets are limited in size, we generated a pseudo-synthetic dataset
consisting of 200 samples for each of the 5 breast cancer subtypes (Methods 2.4). Briefly, a count matrix was generated
which contains the PAM50 transcripts estimated from breast cancer datasets in the compendium. The frequency vectors
for the five subtypes depicted in Figure 6A are in broad concordance with the original PAM50 frequency vectors
(Figure 2A). Edges were included in the adjacency matrix if and only two samples had the same subtype.

Not surprisingly, the single-tissue model trained with both the count data and the adjacency matrix was able to recuperate
the subtype-specific transcript frequency vectors ω (average JSD(ω, ω̂) = 0.016± 0.017; Figure 6B). Moreover, the
UMAP produces five distinct clusters that nearly perfectly separate samples by subtype (panel F). To test the contribution
of the adjacency network, we repeated the training process but this time removed a fraction of all edges. Figure 6C
depicts the estimated frequency vectors when 80% of all edges were removed, leaving only 20% of the edges between
samples of the same subtype. There is a noticeable decrease in the model’s capacity to recapitulate the generative
transcript frequencies ω (average JSD(ω, ω̂) = 0.041± 0.029). This is reflected in the associated UMAP where each
"snake-like" cluster contains samples with different subtypes (panel G). The last experiment instead introduces false
positives into the adjacency matrix prior to training. Again, the capacity of the model to recapitulate the ω vectors is
reduced (average JSD(ω, ω̂) = 0.042± 0.052; Figure 6D) and the resolution of the UMAP has decreased with some
her2-enriched samples clustering with normal-like samples, and some confusion between luminal A and B (panel H).
Although reconstruction of the adjacency matrix required unequal weighting of the reconstruction and KL-associated
loss (Methods 2.7), the reconstructed graphs were nearly indistinguishable from the original input graphs (Figure 6I-K).
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Figure 6: The adjacency information assists in down-stream applications such as sample clustering. A pseudo-synthetic
count matrix was constructed using NB distributions for the PAM50 transcripts derived from breast cancer fRNA-seq
datasets. A. A heatmap of frequency vectors ω for each of the 5 PAM50 breast cancer subtypes. B. A heatmap inferred
ω̂ of a PREFFECT model built using an informative sample-sample edge matrix. The UMAP is also clustered from
the ω̂. C. The ω̂− when 80% of edges of the sample-sample adjacency matrix were randomly deactivated. D. The ω̂+
when 80% of edges of the sample-sample adjacency matrix were randomly activated. E. We compare the distributions
of ω̂ from B-D to the generative ω (A) of each subtype via JSD. We plot ∆ JSD of ω̂ (B) to either ω̂− or ω̂+ (C-D)
across each PAM50 subtype. F-H. UMAP clustering of ω̂ from B-D, respectively. I. The adjacency matrix for a random
subset (M = 200) of the samples. Here yellow corresponds to the existence of an edge indicating both samples have
the same subtype (probability of 1) and black corresponds to no edge (probability of 0). J. The reconstructed adjacency
matrix. K. Differences between the generated and reconstructed adjacency matrices are negligible.

Full model: Incorporating surrogate tissues

In some cases, surrogate fRNA-seq data is available for two or more related tissues or conditions. For example, in disease
studies, often both the affected and matched healthy/normal tissue from a patient is profiled. In cancer, the profiles of an
index lesion can be complemented by profiles of their match normal tissue, the tumor microenvironment, and metastatic
sites. The full model in PREFFECT generalizes the single model by accepting a set of tissue-specific count matrices
X(1), X(2), . . . X(T ) ∈ ZM×N>0 along with corresponding sample-sample adjacency networks A(1), A(2), . . . A(T ) for
the T matched tissues profiled over a common set of N transcripts (Figure 3D). The learning procedure fits the NB or
ZINB models to each tissue via the GAT layers and adjacency matrices as in the single layer model, but additional
layers in the network combine the T latent spaces into a single joint latent space. In this way, the related tissue types
influence the fit (Figure 7).
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Figure 7: Neighborhood information is encoded in the adjacency networks. Blue ellipse indicates the neighborhood of a
specific sample si in the target tissue, while the green and pink ellipses depict the neighborhoods of sample si in the
first and second surrogate tissues. Edges are included between nodes corresponding to si between the three tissues.

Profiles of matched tissues can improve sample clustering

We again use breast cancer as an example, since we have access to a dataset with matched primary tumor and stroma
profiles. It is well-established that breast cancer samples have both a primary tumor subtype [55, 58] and a tumor stroma
subtype (e.g., [59]). The tumor and stroma subtyping schemes are distinct and the relationship between them appears
to be complex and is still not fully understood. The full PREFFECT model provides a means to generate clusterings
informed by the transcriptional profiles of both tissues simultaneously. To explore this, we generated pseudo-synthetic
count matrices for both tissues as follows (Methods 2.9). Starting with the primary tumor matrix, 1000 samples were
randomly assigned to four breast cancer PAM50 subtypes; each sample had counts for 100 transcripts corresponding to
the PAM50 transcripts and 50 stroma-specific transcripts. For the tumor count matrix, the PAM50 transcripts were
generated randomly according to an NB distribution with parameters estimated from breast cancer fRNA-seq datasets
in the compendium. However, the 50 stroma-specific transcripts were assigned random counts according to an NB
distribution ignoring all subtype information (that is, these transcripts are uninformative in the tumor profiles). For the
stroma count matrix, each samples was also assigned a stromal subtype: basal samples were randomly assigned either
stromal subtype α or β, her2-enriched samples were assigned stromal subtype γ, and luminal A and B samples were
assigned stromal subtype δ. A distinct frequency vector was generated for each stromal subtype and used to generate
counts for the 50 stromal genes. Random values were assigned to the PAM50 transcripts in the secondary tissue dataset
(that is, the PAM50 transcripts are not informative in the stromal samples). In this two-tissue scenario, we would expect
that samples will cluster according to the five tumor subtypes when the tumor count matrix is used, but α and β samples
would not separate. Conversely, we expect that the samples will cluster by the five stromal subtypes when the stromal
count matrix is used, but the luminal A and B samples would not separate.

Figure 8A confirms this hypothesis regarding separation of the luminal A and B subtypes when using the tumor counts.
Interestingly, in the stroma-related Figure 8B, we also observe the luminal A and B samples separated. We hypothesize
that this unexpected result is due to backpropagation during model training, which transfers information from the model
of tumor counts to the model of stromal counts. Regardless, when the combined latent space is used to cluster the
samples, both the tumor luminal A and B subtypes and the stromal α and β subtypes are separated (Figure 8C).

PREFFECT models for contemporary fRNA-seq datasets

We examined the capacity of PREFFECT to fit good models with available fRNA-seq datasets, and tested whether the
resultant models aided in downstream analysis, specifically sample clustering. Simple models were built for each dataset
in the compendium, but our analysis below focuses once again on the six breast cancer-related datasets to investigate
performance. Here, models were restricted to N = 776 genes from the well-studied pan-breast cancer BC360 panel
(NanoString Inc.), since we can expect that their transcript values will vary significantly across the datasets. Initially,
hierarchical clustering was applied to the data before applying PREFFECT (log-transform mean trimming 1% with
variance stabilizing transformation). We observe a broad range of count values with many zero counts (represented by
white). Although clusters are enriched for same-subtype samples (especially basal), many subtypes (especially luminal
B) are diffuse across the clustering (Figure 9A for dataset GSE167977). When the inferred transcript frequencies ω̂ are
used instead, the expression becomes more polarized away from 0, presumably due to imputation of missing values
(panel B). When the samples and transcripts are reclustered using the inferred transcript frequencies, we see much more
homogeneous clusters for every subtype with the exception of the basal subtype which was already homogeneous.
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Figure 8: Multi-tissue PREFFECT models can be developed using information from both primary and secondary
matched tissues. To test the full model, we developed both a pseudo-synthetic breast cancer tumor count matrix (where
PAM50 transcript counts follow subtype-specific distributions) and a secondary synthetic stromal count matrix (where a
second set of 50 transcripts had counts separating them into four stromal subtypes α, β, γ, δ). Hierarchical clustering
was applied to the resultant latent spaces A The latent space of the primary tumor tissue, which clusters according to
PAM50 subtype but not stromal subtypes. B The latent space of the secondary stromal tissue, which clusters according
to stromal subtype but also surprisingly separates luminal A from B in the tumor, likely due to information transfer
during the learning procedure. C The combined latent space, which clusters the samples by the cross-product of the two
subtyping schemes.

A                                                 B                                             C   (reclustered)

Scale (A) Scale (B/C)

Figure 9: A simple PREFFECT models was fit using the BC360 (NanoString Inc.) panel from dataset GSE167977.
A. Hierarchical clustering was performed using the PAM50 transcripts contained in the BC360 panel. B. The same
sample and transcript clustering is re-drawn from panel A but instead here color corresponds to the estimated transcript
frequencies ω̂. C. Using the estimated frequencies ω̂, the samples and transcripts are re-clustered, resulting in sample
clusters which are more homogeneous, consisting of a single subtype. In all panels, PAM50 subtypes were inferred
from observed counts (top) and also from the inferred frequencies µ̂ (bottom).
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Discussion

Analysis of the fRNA-seq compendium suggests that the vast majority of transcript counts are well-modeled by an
NB distribution, although both the mean µ and dispersion θ parameters vary considerably compared to other types of
RNA-seq data including bulk and single-cell profiling. Many transcripts have a considerable number of zero counts;
in fact, the median zero count rate in all datasets was almost half (0.46). Nevertheless, the NB is still able to model
transcript counts well with small µ and small θ < 1 indicative of an “exponential-like” shape. Few transcripts were
better modeled using the ZINB with its additional dropout parameter π, an observation that holds across all datasets.
Although the distribution of counts for many transcripts is suggestive of a mixture of a zero-inflated Poisson and
truncated normal distribution [32, 33], a simple NB distribution was still better able to fit the data, most likely because
their variances are far greater than their means.

We focused here on breast cancer datasets and often specifically on subtype in our analyses. This restricted focus allows
us to comment on the capacity of fRNA-seq profiles to reflect the well-established properties of these samples. For
example, our investigation of the PAM50 transcripts highlighted large differences in the shape of the NB distribution
between the subtypes. Her2-enriched samples, which we expect to highly express the ERBB2/HER2 gene, do in fact
have counts that fit well to a NB with a large µ > 6, variance and dispersion. In contrast, non-her2-enriched samples
have a significantly lower µ (decreased 6 to 12-fold) and a greatly reduced variance (up to a 506-fold differential),
with a distribution shape similar to an exponential. A similar statement can be made for the majority of the PAM50
transcripts. Not surprisingly, the count matrices from essentially all datasets in the compendium were affected by batch
effects and other technical variables, including DV200, which measures the average length of RNA fragments.

In response, we created PREFFECT, a series of generative models based on conditional VAEs to impute and factorize
observed transcript count data to de-noise and adjust for both technical and biological variation. PREFFECT offers a
number of alternatives to adjust for batch effect, which is a difficult problem likely without a single unique solution. We
continue to experiment with alternative approaches based on disentanglement [60] and by incorporating adversarial
learning to “cleanse“ the latent space of batch information [61, 62]. Such approaches may better remove the effects of
batch or other user-specified adjustment variables.

Using so-called pseudo-synthetic datasets of sufficient size, we show that PREFFECT can accurately infer generative
parameters and accurately impute missing values for the range of parameter values observed in the real data. The high
frequency of zero counts in the fRNA-seq data motivated extensions of the simple model that integrates neighborhood
information via a sample-sample adjacency graph. This single tissue model uses graph attention networks (GATs) to
assist the learner to attend to the most influential neighbors from which to infer missing values. We showed how such
imputation can lead to better patient subtyping with breast cancer datasets. The full model allows for multiple matched
tissues from the same patient sample to be integrated. To the best of our knowledge, this is the first generative tool to
incorporate multiple patient-matched tissues. We show that the joint latent space that PREFFECT forms can lead to
more insightful patient clustering, again in the context of breast cancer subtype.

The vast majority of available fRNA-seq datasets currently are of moderate size. For example, the datasets in the
compendium used here have a median of 93 samples, a value that is four orders of magnitude smaller than some
datasets available for scRNA-seq. Generative approaches such as PREFFECT, which provide a means to ablate nuisance
technical parameters and better capture true biological signal, would certainly benefit from larger fRNA-seq datasets,
given the degree of variability and extreme measurements, especially in contexts such as cancer where we know
that samples are affected by strong transcriptional programs (e.g., estrogen receptor status in breast cancer and other
subtype-related programs). The undersized nature of current fRNA-seq datasets may partially explain why FFPE-based
studies remain very challenging. Nevertheless, PREFFECT is able to fit models to existing datasets and we are able to
show that the models may assist in improving downstream analyses. However, for some datasets, this required multiple
training runs with different parameter settings that appear dataset specific. Model fitting to larger fRNA-seq datasets
would likely be more straightforward.

PREFFECT would benefit from various extensions including support for differential expression with frameworks such
as Boyeau et al. [63] and more support for visualization of the various latent spaces and fitted data. The full model
with multiple tissues is complex and its success still requires rather extensive experimentation at times with multiple
parameters to find good weightings for components of the loss function and other parameters involved in training. We
are continuing to simplify and develop best-practice recommendations for integrating multiple tissues.

Methods

PREFFECT is implemented in Python version 3.9 [64] with PyTorch version 1.12, the geometric package version
2.3 [65] and the CUDA toolkit version 10.2.89. Statistical analyses were performed using Python version 3.9 and
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R version 4.4 [66]. Hierarchical clustering was performed using the seaborn clustermap function with average
distance linkage and Euclidean distance. UMAP was performed using the umap− learn [67] package in SCANPY [68]
(min_dist = 0.3).

2.1 The fRNA-seq compendium.

fRNA-seq datasets were downloaded and processed, only when raw count information was available. All datasets with
GSE identifiers were obtained from the Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo/. The
TMBC dataset was obtained from The Metastatic Breast Cancer Project [54] available through cBioPortal [69]. The
Sunnybrook cohorts are not currently publicly available but are pending publication. We collected clinicopathological
and technical variables (such as batch identification number) whenever possible. The datasets vary across tissue, cell
type, age of the cohort and profiling techniques (Supplementary Table S1). Transcripts with zero counts across all
samples were removed. Since the PAM50 subtype for samples was not provided in the breast cancer FFPE datasets,
we estimated it using the PAM50 classifier [55]. In cases where a PREFFECT model was not used, the data was
first subjected to a variance stability transformation, log-transformed and gene-centered. The resultant counts were
to centroids for each of the PAM50 subtypes (obtained from genefu version 2.22.1) using Pearson correlation. The
molecular subtype with the highest concordance was selected for each sample.

2.2 Fitting statistical models to fRNA-seq datasets.

The following methods apply only to our initial descriptive statistics investigating the fit of different distributions to
fRNA-seq data. To mitigate differences in the number of reads per sample, each input count matrix X ∈ ZM>0×N ,
where M and N are the number of samples and transcripts respectively, was transformed to matrix X ′ where

X ′i,j = C · Xi,j∑
j′ Xi,j′

,

for a large constant C (e.g., C = 106). Where noted, we used a trimmed mean approach to mitigate the influence of
outliers (set to 1%), although this was not used when comparing the NB versus ZINB distributions (Figure 1B), as
increasing the trimmed mean percentage increases the number of zeros that are removed and therefore could result in
bias against zero-inflated distributions such as the ZINB.

Expression data was fit to six distributions using two different methods. The AIC measures the goodness of fit as
2k − 2ln(L) where k is the number of parameters of the distribution and L is the likelihood of the model given the
observed data. All non-zero inflated distributions were fitted using the StatsModels package [70]. For zero-inflated
models, the AIC and distributional parameters were estimated using the minimize function from scipy [71] to optimize
the negative log-likelihood; this was repeated over a range of initial π values to minimize the negative log-likelihood.
The D statistic of the Kolmogorov–Smirnov (KS) test was computed between the empirical cumulative distribution
function for each transcript in every dataset and the cumulative distribution function of each reference distribution. The
KS test was used to ensure that differences in the number of parameters between the six distributions did not unduly
affect the results. In this analysis, transcripts were removed if they did not have non-zero counts in at least 20% of the
samples. A 1% trimmed means was applied to eliminate outlier measurements.

2.3 Synthetic datasets.

Synthetic datasets were generated primarily as a convenient means to investigate technical correctness, the limits
of the PREFFECT generative models and some parameter optimization. For the analysis related to Figure 4A-
F, count matrices were generated across a range of location and scale values for the NB distribution. For each pair
(µ, θ) ∈ {50, 100, 500, 1000}×{0.01, 0.1, 1, 2, 5, 10, 100}, a count matrix was formed across theN = 1000 transcripts
and M = 1000 samples using variates from NB(µ, θ). For the analysis related to Figure 4G-I, the count Rg for each
transcript g in each sample is formed as follows:

µg ∼ log N (loc = 100, scale = 0.1),

Rg ∼ NB(µg, θ = 10).

In several places, we require count data generated by a ZINB process. Toward this end, each transcript in the dataset
was assigned a dropout value π ∼ U(0.0. . 0.8). Then π samples across the transcript were randomly selected and these
values were set to 0. Batch effects were simulated as follows: (1) samples were included in batch 0 with probability α
(sampled from U(0, 1)), otherwise they were assigned to batch 1. (2) Two location parameters µ0 andµ1 are chosen for
the batch-specific NB distributions. (3) For each transcript i in sample j belong to batch k, µi,j ∼ logNormal(µk, 1)
and Ri,j ∼ NB(µi,j , θ). Different values for µ0, µ1 and θ were explored.
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2.4 Pseudo-synthetic datasets.

Since the fRNA-seq datasets are small (< 200 samples), we used a pseudo-synthetic approach in our studies of the
single tissue generative model and sample clustering. Here we fit an NB distribution to the counts for each PAM50
transcript, obtained from real datasets and stratified by patient subtype after 1% mean trimming. Patient subtype
was estimated using the PAM50 classifier [55] after applying a variance stabilizing transformation to the counts and
log-transforming the data. The patient subtype was estimated again after fitting the PREFFECT model without this
transformation. Additional transcripts were added to the matrix but here counts were simply random variates following
the methods described in Methods 2.3. When required, a sample-sample adjacency matrix was constructed by placing
an edge between two samples of the same subtype. To evaluate the contribution of the adjacency matrix to imputation,
we constructed a null adjacency matrix by randomly permuting the edges in the matrix. We ensured as best possible
that the samples had similar library sizes regardless of their subtype.

2.5 Imputation

Several experiments were carried out to test the capacity of PREFFECT to self-learn or impute missing values using
synthetic or pseudo-synthetic datasets. The collection D of positions (i, j) in the count matrix that were replaced by a
zero to simulate dropout was recorded. The median relative error was computed between the true (hidden) generated
and the imputed value across all such locations (i, j): For X ∈ {µ, θ, π},

MRE(X, X̂) = median(i,j)∈D
|X̂ −X|
|X|

.

2.6 Batch corrections

Several experiments were carried out to investigate the capacity of PREFFECT to adjust for batch effects. In the first
experiment, we created a synthetic dataset with M = 1000 samples and N = 900 transcripts and simulated a simple
batch effect as follows. First, a sample s was assigned to batch 0 with probability b. Otherwise, it was assigned to batch
1. Let batch(s) denote its batch. Second, a frequency vector ω for the transcripts was generated using the stick-breaking
algorithm [72]; ω was used to generate variates for all samples, regardless of batch and a single suitably large library
size L was chosen for all samples. Transcript counts Cs,g for sample s and transcript g were generated according to a
hierarchical model as follows:

Cs,g ∼ NB(N (µg, σ
2), θ) + batch(s) · Bern(p) · N (µB , σ

2
B) ,

where µg = L · ωg , σ = 1, p corresponds to the probability a transcript is subject to the batch effect, µB and σ2
B are the

parameters for a normal distribution describing the batch shift. Note that the final library sizes (from summing over all
transcripts per sample) will tend to be larger for batch 1 samples.

Three distinct experiments were conducted as follows:

Experiment 1. Library size L = 105; B = 100; σ2
B = 1; p = 1 implying all transcripts in batch 1 received the

adjustment. Samples were assigned to the two batches with equal probability.

Experiment 2. As for Experiment 1 but the probability f that an individual transcript in batch 1 would be subjected to
the batch effect varied from 0.5 to 1.

Experiment 3. Similar to Experiment 2 but two distinct frequency vectors ωα and ωβ were randomly generated via the
stick-breaking algorithm representing two subtypes α and β respectively. A sample was randomly assigned to either
subtype α or β with equal probability. Therefore, a transcript g in sample s, µg is equal to either L · ωα or L · ωβ
depending on whether s was assigned to subtype α or β.

The Jensen–Shannon divergence, a symmetrized and smoothed version of the KL divergence, is used to measure the
distance between frequency distributions the generative transcript frequencies ω and the estimated transcript frequencies
ω̂. The JSD is a symmetrized and smoothed version of the KL divergence:

JSD(ω || ω̂) =
1

2
KL(ω ||M) +

1

2
KL(ω̂ ||M),

where M = 1
2 (ω + ω̂) is the average, mixture distribution and KL(·, ·) is the KL divergence. In Figure 5F and G, we

are interested in measuring the change in JSD after adjusting for the batch. In particular, we compute

∆ JSD(ω, ω̂, ω̄) = JSD(ω, ω̄)− JSD(ω, ω̂),
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where ω̄ is the adjustment (via the latent representation) of ω̂.

Using the estimated transcript frequency vectors ω, the samples were mapped to two dimensions for visualization using
UMAP.

2.7 Construction of adjacency matrices

The single and full models accept as input a sample-sample adjacency matrix A(τ) for each tissue τ . If the adjacency
matrix is formed from count data, which is not necessarily the same as the input matrix X(τ), it is recommended that it
be first transformed (e.g. square root and mean trimming) and normalized. In the experiments related to clustering with
the single and full models, edges were included in the graph if and only if the two samples were of the same subtype.

2.8 Investigating the contribution of the adjacency matrices

Our explorations of the contribution of the sample-sample adjacency network to imputation, clustering and network
reconstruction, used the breast cancer datasets from the compendium. In particular, we needed to generate a (large) set
of pseudo-synthetic samples using a transcript frequency vector ωs specific to each subtype s. We began by preparing
each dataset as per Methods 2.2 before PAM50 subtype was estimated for each sample. Next, we transformed the raw
input count matrix X to a matrix X ′′ where

X ′′i,j = C · Xi,j∑
j′ Xi,j′

,

but this time we used C = 1 so that the resulting rows (samples) of X ′′ correspond to the frequency vector for all
transcripts. Now for each subtype s, we compute a vector ωs which is the average frequency of each transcript in all
samples of the subtype s. ωs is then used to generate sample-specific variations across each of the genes. For each
subtype s, a chosen library size L, and gene specific dispersion θ, we create Ns pseudo-synthetic samples where each
such sample has a transcript count vector formed as follows:

µ = L · ωs,
ωi,g ∼ Γ(shape = θg, rate = θg/µg)

Xi,g ∼ Poisson(ωi,g)

As such, each transcript should be distributed according to a NB distribution with parameters mean µ and dispersion θ
as per the generative model underlying PREFFECT. An adjacency matrix was formed as per Methods 2.7 with edges
placed between two samples if and only if they are of the same subtype.

Successful training of the model required a specific weighting scheme to balance reconstruction versus KL-associated
loss. After a search across a broad range of possible values, we found that edge reconstruction was most accurate
when the components of the loss function were waited as follows: KL weight adjusted by a factor 0.1, expression
reconstruction adjusted by a factor of 100, and edge reconstruction weight by 1000.

2.9 Investigating the full model

This experiment requires two matched count matrices; the first matrix representing the primary tumor transcript counts
and the second matrix representing the stromal counts. In both cases, there are 100 transcripts and 1000 samples where
sample i in the primary tumor matrix is matched with sample i in the stromal matrix. For the primary tumor count
matrix, assigned 250 (of 1000) samples to each of four breast cancer subtypes (here we did not use a normal-like
subtype for simplicity). The first 50 transcripts correspond to PAM50 genes. NB counts were generated from parameters
estimated for each subtype from breast cancer datasets in the fRNA-seq compendium. The second 50 transcripts
are non-informative; the counts are simply variates from NB(100, 1) and so should have no significant impact on
downstream sample clusterings. This gives us a set of M = 1000 samples each assigned a tumor subtype across the 50
PAM50 transcripts and 50 non-informative transcripts.

To simulate stromal subtyping schemes, we partitioned the 1000 samples into 4 stromal subtypes (labelled α− δ) as
follows:

• if the sample was assigned the basal subtype in the tumor samples, it randomly receives either stromal subtype
α or β with equal probability;

• tumor her2-enriched samples were assigned stromal subtype γ; and
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• tumor luminal A and B samples were both assigned stromal subtypes δ.

In this (artificial) manner used for exemplary purposes, the stromal subtypes provide greater refinement of the tumor
subtypes in one case (basal subtype), and the tumor subtypes provide greater refinement of the stromal subtype in one
case (the δ subtype is fractured into luminal A and B subtypes).

A distinct transcript frequency vector was generated via a stick-breaking algorithm for each of the 4 stromal subtypes (as
per Methods 2.6). The stromal count matrix consists of the 50 PAM50 transcripts and 50 stroma-specific transcripts. For
the stroma, the PAM50 transcript counts are just random variates from NB(100, 1). The 50 stroma-specific transcript
counts are generated using the corresponding frequency vectors ωα, ωβ , ωγ , ωδ .

2.10 Optimization

Supplementary Information 3 provides a detailed description of the model and loss functions. The Adam optimizer was
used for all hyper-parameter searches that included various learning rates, weight decay, number of epochs, mini-batch
size, size of the intermediate r′, size of latent space r (r also controls the number of heads in the GAT layer), and the
total number of samples M . The α parameter for leaky ReLU activation functions was set to 0.2 and dropout was set to
0.1 throughout all analyses.

CODE AND DATA AVAILABILITY

PREFFECT is available at https://github.com/hallettmiket/preffect. The code used for analyses in this
paper is available at https://github.com/hallettmiket/preffect-paper.
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AIC versus Kolomogorov-Smirnoff D statistic. The preference for the NB may be biased due to the fact that different
distributions have different numbers of parameters (e.g., 1, 2, 3 for the Poisson, NB and ZINB respectively). The D
statistic provides an alternative approach that is insensitive to model complexity. Here we used a null hypothesis H0

stating that there is no difference between the cumulative distribution of the observed expression of the gene and the
cumulative distribution of the theoretical distribution. For each dataset and each gene (trimmed mean of 1%), we
rejected the null hypothesis using an (unadjusted) p-value of 0.01. In 12 out of the 13 datasets, the preference remained
the NB distribution (Supplementary Figure S1A).

NB versus exponential distribution. For the majority of transcripts, the NB and exponential distributions had the first
and second lowest AIC scores with averages of 60.4% and 35.8% respectively (Figure 1A). We asked if the preference
for NB was an artifact of how expression was pre-processed. More specifically, we note that the shape of the NB
distribution when there is high dispersion θ and a low expected count µ is similar to the shape of the exponential
distributions especially when there are extreme transcript counts in the right tail. Therefore, we hypothesize that
relatively strong preference for the exponential distribution is due to the presence of outliers. In particular, we asked
whether an increase in the trimming of outliers (especially those in the right tail) would decrease the preference for
the exponential distribution. This is confirmed in Supplementary Figure S1B, further strengthening our belief that the
fRNA-seq transcript count is distributed according to the NB distribution.

Tr
im

 1%

Tr
im

 0%

Tr
im

 5%

Tr
im

 10
%

A B

Figure S1: A. The fraction of transcripts where the null hypothesis is accepted according to the KS two-samples test.
Column labelled None indicates the fraction of transcripts where the null hypothesis was not accepted for any of the
distributions. B. The fraction of transcripts that preferred an exponential distribution (via the AIC measure) across
different thresholds for mean trimming. Increased trimming reduces the number of outliers; the removal of right tail
outliers reduces the preference for the exponential distribution.
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Figure S2: Histograms of counts for each PAM50 transcript in the Sunnybrook DCIS tumor cohort. Samples were first
normalized by median library size, and subjected to outlier trimming. Samples were stratified by the PAM50 classifier
before an NB distribution was fit to each transcript. The y-axis was truncated to improve readability.
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4 Supplementary Methods
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4.1 The PREFFECT model

We describe a set of non-linear mappings to compute variational posteriors given the expression matrix and variables
(e.g., batch) for adjustment. qΦ is the resultant estimation of the true posterior distribution pΘ, where Φ,Θ denote
all relevant underlying parameters. The exact parameterization of qΦ depends on which of the tree models (simple,
single-tissue and full) is used (Supplementary Figure S3). qΦ is composed of several component conditional VAEs
described below.

The input to all models is partitioned into minibatches with row dimension M ′ where size M ′ ≤M (Supplementary
Figure S3, top). Count matrices are restricted to only the M ′ samples of the minibatch with width equal to the number
of transcripts N . Optionally, (biological and technical) adjustment variables that describe the samples can also be
passed. Such variables can either be categorical (with total width of their encoding denoted by k′ or continuous (with
total width denoted by k′′). We use K to denote all such adjustment variables. Adjacency networks for the single tissue
and full models are also partitioned into M ′ ×M ′ adjacency matrices. The relevant components of VAEs to handle
adjacencies can also include adjustment variables K.

Library sizes are computed and fit using a log-Normal distribution. Across all models, the observed sample library sizes
L can be allowed to vary during model fitting. Supplementary Figure S3A depicts the neural network underlying the
encoder qL,(τ)

Φ (Z
(τ)
L |L(τ),K(τ)) that approximates the true posterior distribution pΘ(Z(τ)|L(τ),K(τ)). The encoder

for the simple model is a three-layer neural network that outputs a latent space with final dimension r (Supplementary
Figure S3B). The encoder qΦ(Z|X,K) is an estimate of the true posterior pθ(Z|x,K) where θ is the set of all
parameters of the neural network. When multiple tissues are present (full model), we write q(τ)

Φ (Z(τ)|X(τ),K(τ)).

The single tissue layer (T = 1) and full models (T > 1) encode the input sample-sample adjacency networks into
separate Gaussian VAEs. The encoder qA,Φ(ZA|X,A,K) for the networks and associated adjustment variables estimate
the true posterior distribution pA,θ. The underlying neural network for each tissue τ begins with a GAT version 2
convolutional layer [52] with a tune-able parameter h denoting the number of heads in the attention mechanism
(Supplementary Figure S3C). For each expression matrix X , each edge eij in the adjacency matrix S associated with
X , and for each attention head 1 ≤ η ≤ h. we compute:

eηij = ELU(aη([W ηXi,·||W ηXj,·])).

Here || denotes the concatenation operation, W η is the weight matrix, and aη is a vector with dimension R1×2r. These
values are then normalized across all neighbors N (τ)

S (i) using a softmax function:

αηij = softmaxj(e
η
ij) =

exp(eηij)∑
k∈NA(i) exp(e

η
ik)
.

These normalized attention coefficients are then used to compute a linear combination of their features, and the h heads
are concatenated as follows:

X ′i =
∥∥∥h
η=1

∑
j∈NS

αηijW
ηXj,·.

The width of the embedding is therefore rh.

The reparameterization step generates two sets of variates for the latent space of each tissue:

Z
(τ)
i,j ∼ µ

(τ)
i,j + ε

(τ)
i,j · (e

1
2 logvar

(τ)
i,j ),

ε
(τ)
i,j ∼ N (0, σ

(τ)
i,j ),

across samples 1 ≤ i ≤ M ′ and for each dimension of the latent space 1 ≤ j ≤ r. A separate decoder produces an
M ′ ×M ′ estimation of Â(τ) for each adjacency tissue (only single-tissue and full models).

The decoder in the simple model consists of two linear layers that produce estimates of the parameters for the NB
distribution including cm, which is a probability density function where cm,g is the fraction of counts for the transcript g
in each a sample m, and the inverse dispersion θ. θ can be estimated for each gene-sample combination (denoted θm,g ,
or for each gene within each batch (θg). Let lm be the library size for sample m (optionally, this may be optimized
during the learning step). The NB distribution is expressed as a hierarchical Gamma-Poisson model:

µm,g = lm · cm,g,
ωm,g ∼ Γ(shape = θg, rate = θg/µm,g)

cm,g ∼ Poisson(ωm,g),
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for each sample m and transcript g. See also Figure 3C. If the ZINB is preferred, the dropout probability π is also
estimated. The final reconstructed expression is defined as follows:

ĉ(τ)
mg =

{
cm,g if Bern(πm,g)

0 otherwise.

The other models have a set of latent spaces Z1, . . . , ZT which are concatenated during the decoding process (Supple-
mentary Figure S3E):

Z ′ =
∥∥∥T
τ=1

Z
(τ)
A = Z

(1)
A Z

(2)
A · · · Z(T )

A .

This extends the neighborhood expression learned via the attention mechanisms from a single tissue to the neighborhoods
from all tissues (Figure 7).

4.2 Loss

We follow standard practice [57] for computing loss during training via the evidence lower bound, which combines
the expected log-likelihoods of the reconstruction terms and the reverse KL divergence to regularize the posterior
distributions of the latent variables. We assume that the priors follow a multidimensional normal with the identity
covariance matrix. That is, they follow a N(0, Ir) distribution where Ir is the identity matrix over the r dimensions of
the latent space.

For the full model, this is formulated as:

L = EqΦ [log pΘ(X|Z,ZA, ZL,K) + log pΘ(A|Z,ZA, ZL,K) + log pΘ(L|ZL,K)] (1)
−DKL(qΦ(Z|X,A,K) || pΘ(ZA))

−DKL(qΦ(ZA|X,A,K) || pΘ(ZA))

−DKL(qΦ(ZL|L,K) || pΘ(ZL))

= EqΦ
T∑
τ=1

log pΘ(X(T )|Z(τ), Z
(τ)
A , Z

(τ)
L K(τ))+ (2)

+ EqΦ
T∑
τ=1

log pΘ(A(T )|Z(τ), Z
(τ)
A , Z

(τ)
L K(τ))+ (3)

+ EqΦ
T∑
τ=1

log pΘ(L(T )|Z(τ), Z
(τ)
L K(τ))+ (4)

+
T∑
τ=1

−DKL(qΦ(Z(T )|X(T ), A(T ),K(τ)) || pΘ(Z(T ))) (5)

+
T∑
τ=1

−DKL(qΦ(Z
(T )
A |X(T ), A(T ),K(τ)) || pΘ(Z

(T )
A )) (6)

+
T∑
τ=1

−DKL(qΦ(Z
(T )
L |X(T ), bK(τ)) || pLΘ(Z

(T )
L )) (a)

Equation 1 is computed as either LZINB = −log(ZINB(ĉ|π, ω, θ)), where ZINB(X|π, ω, θ) = πδ0 + (1 −
π)NB(X|ω, θ) and δ0 is the Dirac function, or LNB = −log(NB(c|ω, θ)), where NB is the negative binomial
function. Equations 2 and 3 are computed using binary cross entropy. DKL refers to the KL divergence. Equation (a) is
the KL divergence if the library sizes are allowed to vary. There are also options within the PREFFECT code base to
bias the learner to a disentangled latent space with respect to the adjustment variables K following the approach from
Chen et al. [73].

29

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2025. ; https://doi.org/10.1101/2025.02.21.639356doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.21.639356
http://creativecommons.org/licenses/by/4.0/

	The fRNA-seq compendium.
	Fitting statistical models to fRNA-seq datasets.
	Synthetic datasets.
	Pseudo-synthetic datasets.
	Imputation
	Batch corrections
	Construction of adjacency matrices
	Investigating the contribution of the adjacency matrices
	Investigating the full model
	Optimization
	Supplementary Information
	Supplementary Methods
	The PREFFECT model
	Loss


