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Highlights 

●​ Adult gut microbiomes are defined by three functional archetypes 

●​ Archetypes reveal distinct metabolic potentials and inform on microbiome stability 

●​ Archetype-specific functional profiles confound disease associations and reveal 
therapeutic targets 

●​ A deep-learning framework enables robust characterization of microbial functional 
ecosystems 

Summary 

Understanding the functional diversity of the gut microbiome is essential for decoding its roles 
in health and disease. Using a deep-learning framework, we identified three functional 
archetypes defining healthy adult gut microbiomes, each characterized by specific metabolic 
potentials: sugar metabolism with branched-chain amino acid and cell wall synthesis 
(Archetype 1), fatty acid and TCA cycle metabolism (Archetype 2), and amino acid and nitrogen 
metabolism (Archetype 3). Archetype proximity is linked to stability, with Archetype 2 
representing the most resilient state, likely due to its metabolic flexibility. Functional diversity 
emerged as a confounder in disease-associated microbial signatures. In inflammatory bowel 
disease, we observed archetype-specific shifts, including increased carbohydrate metabolism 
in Archetype 1-dominant samples and inflammatory pathways in Archetype 3-dominant 
samples, suggesting distinct opportunities for microbiome-targeted interventions. This 
framework addresses key challenges in microbiome research, including inter-individual 
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variability and confounding, while providing robust insights into disease-associated functional 
shifts and microbial ecosystem dynamics. 

Introduction 

Host-adapted microbial communities and their collective genomes, termed microbiomes, are 
shaped by host anatomy and physiology, inhabiting diverse ecological niches across the 
body.1–3 Within these niches, microbiomes engage in dense and dynamic interactions - ranging 
from mutualism to competition - which critically influence their composition, functionality, 
stability, and resilience.4–9  

Microbiomes exhibit variability at multiple scales, including differences between host species, 
body sites, and individuals. This variability poses significant challenges for experimental 
design and clinical interpretation, hindering reproducibility and limiting biological discovery.10 
Furthermore, identifying the magnitude and patterns of these variations is essential for 
understanding microbiome dynamics and their functional consequences.  

In the human gut, the microbiome undergoes dramatic changes from infancy to adulthood, 
ultimately assembling into a relatively stable 'climax community'.11,12 Despite broad 
interindividual variation, healthy gut microbiota have been broadly categorized into three 
'enterotypes' dominated by Bacteroides, Prevotella or Ruminococcus.13–16 These configurations 
are associated with host factors such as diet, health, and metabolic characteristics.17,18 Similar 
patterns, which we term Microbial Configurations (MCs), have been identified in other body 
sites and across animal species, underscoring the generality of this phenomena.1,19–22  

Early efforts to identify MCs relied on simple clustering techniques, but these methods often 
oversimplify the complexity of microbial ecosystems. Continuous or 'quasi-discrete' gradients 
have since been proposed as more accurate representations of microbial variation.17,23–26 While 
the recognition of quasi-discrete compositional MCs and their associated factors represent an 
important step forward, it raises critical questions about their origins and implications. Are 
these configurations primarily driven by community composition, or do they reflect functional 
characteristics that transcend taxonomic variation? Moreover, it remains unclear whether 
compositional MCs sufficiently capture overall community function or if functional MCs 
diverge from compositional patterns altogether.  

These questions are fundamental to not only understand microbiome inter-individual variability 
and function but also underlying parameters defining their stability and resilience. Functional 
redundancy—where multiple species within a community perform overlapping roles—has 
emerged as a key mechanism underlying microbiome resilience, ensuring the preservation of 
essential functions despite compositional fluctuations.27 Furthermore, metabolic 
independence and resilience in stressed gut environments have been identified as crucial 
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factors for maintaining host health.28 These insights highlight the need for analytical 
frameworks that can capture the functional dynamics of microbial ecosystems. 

To address these questions, we used an analytical framework that combines deep learning 
and archetypal analysis to model non-linear functional interactions within microbial 
ecosystems.29–32 By identifying extremal points, or archetypes, this approach represents each 
microbiome's functional profile as a mixture of archetypes, enabling a nuanced 
characterization of functional MCs. Using this framework, we define the functional variability 
of global healthy adult gut microbiomes and investigate the interplay between composition, 
function, and stability. This approach addresses key challenges in microbiome research, 
including inter-individual variability and confounding, providing robust insights into 
disease-associated functional shifts. Beyond the gut microbiome, this framework establishes 
a foundation for studying microbial ecosystems in diverse contexts, with broad implications 
for understanding microbial community dynamics and developing microbiome-based 
interventions. 

Results 

A comprehensive compendium of healthy adult gut microbiomes for robust functional archetype 
identification 

We developed a comprehensive compendium to integrate metagenomic profiles from various 
large dataset repositories. Key sources include the curatedMetagenomicData R package33, 
GMrepo34, and additional controlled-access datasets such as LifeLines DEEP35 and Milieu 
Intérieur36 (Table 1; Table S1). Each sample underwent processing with a computational 
pipeline designed to use the latest genome annotations and minimize false positives, 
converting raw reads into relative pathway abundances (Figure S1; STAR Methods). We 
acknowledge that much of the mapping to functional databases likely derives from common 
housekeeping and well-characterized genes, prevalent across diverse bacterial species and 
well-represented in reference databases. 

Our compendium represents the largest repository of whole-genome metagenomic (WGM) 
profiles from healthy adults, comprising 11,309 samples from 76 studies conducted in 31 
countries, mostly from the Global North (Figure 1A, Table 1; STAR Methods). On average, 
WGM studies achieved approximately 900,000 reads per sample, with a range from 55,274 to 
12,437,351 reads, spanning an average of 334 pathways (range: 1-575) (Figure 1B-C). Illumina 
sequencing was predominantly used in 98.6% of studies, while a small fraction (1.4%) used Ion 
proton sequencing. 

To ensure data quality, we excluded samples with total read counts (library size) below 
100,000 or above 2 million, as well as studies with fewer than 30 samples. Additionally, 
pathways with zero counts in more than 10% of samples were removed (Figure 1B-C). The 
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final dataset comprises 436 pathways, with samples expressing an average of 333 pathways 
(range: 118-427), across 9,838 samples available for downstream analyses (Figure S2A-B). 

A significant batch effect associated with study origin was detected and corrected using 
ComBat-Seq37 (Figure S2C-D; STAR Methods). Notably, no substantial batch effect was 
observed for Global Region beyond study of origin (Figure S2E-F), suggesting that despite the 
compendium including only 15% of samples from the Global South, the results after 
adjustment for study are likely generalizable to these populations. Importantly, the batch 
correction preserved key dataset properties, including the prevalence of zeros and library size 
of samples in the dataset (Figure S3; STAR Methods), as well as the count distributions, with 
the negative binomial (NB) distribution identified as the best fit for our functional relative 
abundance data (Figure S4; STAR Methods). 

 

Figure 1​ A large compendium of healthy adult microbiomes for robust functional 
archetype identification (A) A world map illustrating the distribution of microbiome samples 
across countries before filtering, with the number of samples per country indicated by color. 
Countries without available samples are shown in gray. (B-C) Violin plots displaying the 
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distribution of the number of functional pathways (left) and library size (right) for (B) the raw 
functional pathway data and (C) the filtered dataset. Filtering criteria included retaining 
samples with a total read count (library size) between 100,000 and 2,000,000 reads, removing 
pathways present in fewer than 10% of samples, and excluding studies with fewer than 30 
samples. 

Data source Global North 
n (%)  

Global South 
n (%)  

CuratedMetagenomicDataa 5319 (82) 1137 (18) 

GMrepo V2a 603 (79) 162 (21) 

EGA (controlled-access)   

Lifelines-DEEP 36  1108 (100) 0 (0%) 

Milieu Interieur 35  1351 (100) 0 (0%) 

PubMed   

PRJEB49206 (Carter et al., 2023) 0 (0) 158 (100) 

Total 8381(85%) 1457 (15%) 
a Individual BioProject IDs are provided in Table S1 

Table 1. Geographic distribution of curated human gut microbiome datasets. Summary of 
curated healthy adult gut microbiome datasets after quality filtering based on library size and 
cohort size. The table shows the number and percentage of profiles from the Global North and 
Global South regions for each data source. 

Following batch correction, we applied non-linear archetypal analysis by integrating archetypal 
analysis with a variational autoencoder32 (Figure S1; STAR Methods). This approach 
decomposes each microbiome functional profile into a mixture of archetypes, representing 
extreme profiles. Model optimization was achieved by minimizing a combined loss function, 
incorporating the archetype loss (measuring the distance between predicted and fixed 
archetypes) and the reconstruction loss (using negative log-likelihood NB loss to account for 
count distribution characteristics) (STAR Methods). 

Using stability metrics that assess both archetype robustness and sample assignment 
consistency, we identified K=3 as the optimal number of archetypes (Figure S5; STAR 
Methods). To ensure reproducibility, we ran the model across multiple random states (n=100) 
and employed a rigorous selection process based on cosine similarity and archetype 
distinctiveness to identify the most representative state (Figure S6; STAR Methods). The high 
stability values and consistent archetype patterns across random states demonstrate the 
robustness of our three-archetype solution. 
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To visualize the relationship between samples and their archetypal compositions, we projected 
the data using multidimensional scaling (MDS), where the three archetypes define the vertices 
of the solution space. The MDS visualization revealed that while some samples closely aligned 
with pure archetypes (vertices), the majority of samples showed varying degrees of 
contribution from multiple archetypes, suggesting that most human gut microbiomes 
represent functional combinations rather than discrete states (Figure 2A). There is a notable 
density gradient in the archetype usage space, with an enrichment of samples with mid to high 
usage for both archetypes 1 and 3 (Figure 2B). Interestingly, samples with greater affinity to 
Archetype 2 contained a higher number of detected pathways but it was not reflected in the 
compositional data providing the number of species identified in the samples (Figure 2C,D). 
We observed differences in the distribution of Archetype 2 scores across age groups and in the 
distributions of Archetypes 1 and 3 across sexes (ANOVA or t-test, p < 0.001; Figure S7A). 
However, these differences may be influenced by variations in country or regional distributions 
(Figure S7B), as sex and age are not equally represented across countries. 
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Figure 2​ Pathway usage and abundance patterns across archetypal states (A) 
Multidimensional scaling (MDS) representation of samples based on their archetypal 
compositions. Each panel shows the same MDS coordinates, with color intensity indicating the 
relative contribution (usage) of each archetype (scale 0-1). The three archetypes (labeled 1-3) 
define the vertices of the solution space, and each sample's position reflects its mixture of 
archetypal contributions, which sum to 1. Left, middle, and right panels highlight the usage of 
Archetype 1, 2, and 3, respectively. (B-D) Same MDS coordinates as in A), with color intensity 
indicating (B) the sample density or the number of unique (C) functional pathways and (D) 
species present in each sample. (E) Heatmap showing the relative contribution (usage) of the 
top 20 pathways in defining each archetype identified by the deepAA model. Color intensity 
indicates the degree of pathway usage (scale 0-1) for each archetype (type 1-3). (F) Heatmap 
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displays pathway abundances across samples for the top 20 pathways defining each 
archetype. Values were scaled and winsorized at the 2nd and 98th percentiles (z-score). 
Samples are ordered by relative pathway abundance average ranksum plotted on top of the 
heatmap. Bottom annotations show archetypal scores and dominant archetype classification 
for each sample, where dominant type is determined by the highest score among the three 
archetypes. 

Gut microbiome functional states represent blends of three distinct metabolic archetypes 

To define the functional characteristics of each archetype, we identified the top 20 pathways 
that most strongly distinguished them (Figure 2E, Table S2). Each archetype displayed distinct 
metabolic signatures, reflecting their unique functional roles. To explore how these signature 
pathways manifest across samples, we visualized their abundance patterns in relation to 
archetypal classifications (Figure 2F). The resulting heatmap revealed gradual transitions in 
pathway abundances across samples, aligning with their archetypal scores. 

Archetype 1 is characterized by high potential for carbohydrate sugar metabolism and 
biosynthesis of branched-chain amino acid (BCAA) and microbial cell wall component 
biosynthesis (Figure 2E, Table S2). The dTDP-β-L-rhamnose biosynthesis pathway showed 
maximal enrichment, accompanied by other carbohydrate-processing pathways, including 
glycolysis IV, glucose and glucose-1-phosphate degradation, and myo-, chiro-, and 
scyllo-inositol degradation, which collectively constituted four of the top five pathways defining 
this archetype (Figure 2E, Table S2). These sugar metabolism pathways supply key 
intermediates—such as D-glyceraldehyde 3-phosphate, pyruvate, and 
phosphoenolpyruvate—that can fuel multiple downstream processes also highly represented in 
this archetype (Figure 3A). For instance, pyruvate serves as a critical substrate for highly 
expressed BCAA biosynthesis pathways and methylerythritol phosphate pathway. Similarly, 
phosphoenolpyruvate contributes to peptidoglycan biosynthesis pathways essential for 
microbial cell wall. In addition to sugars, this archetype relies on L-glutamate as a key 
substrate for several highly expressed pathways involved in BCAA biosynthesis and 
peptidoglycan production (Figure 3A). L-glutamate is supplied by pathways such as 
S-adenosyl-L-methionine salvage I, guanosine ribonucleotides de novo biosynthesis , and UMP 
biosynthesis pathways. Together, these metabolic features highlight Archetype 1’s specialized 
role in carbohydrate utilization and biosynthesis of key structural and functional components, 
including BCAAs and components of microbial cell wall such as peptidoglycans. 

Archetype 2 is defined by pathways integrating glycolysis, TCA cycle,  glyoxylate bypass, and 
fatty acid metabolism, driving the production of acetyl-CoA, succinate, oxaloacetate, and 
pyruvate (Figure 2E, Figure 3B, Table S2). Central carbon metabolism integrates glycolysis, the 
TCA cycle, and related pathways to process carbon substrates into energy (ATP) and 
biosynthetic precursors such as acetyl-CoA and oxaloacetate. Archetype 2’s elevated potential 
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activity within central carbon metabolism, including pyruvate dehydrogenase, underscores the 
integration of multiple pathways to meet both energy and biosynthetic demands. Acetyl-CoA is 
both produced and consumed across diverse pathways, including fatty acid degradation, 
L-threonine metabolism, and aromatic compound degradation, while its consumption in the 
glyoxylate bypass generates succinate as a key downstream product (Figure 3B). Succinate 
production is a recurring feature of Archetype 2, supported by amino acid degradation, 
methionine biosynthesis, and central carbon metabolism, with some pathways demonstrating 
a metabolite-dependent ability to both produce and consume succinate, while others, such as 
nucleotide biosynthesis, exclusively consume it (Figure 3B). Finally, ammonium is produced 
through pathways linked to amino acid and nucleotide metabolism, while oxaloacetate and 
pyruvate can be both produced and consumed depending on availability (Figure 3B). Unlike 
Archetype 1, which supports branched-chain amino acid biosynthesis, Archetype 2 prioritizes 
energy metabolism and nucleotide biosynthesis, emphasizing its role in driving core 
biosynthetic and energy-yielding processes.  

Finally, the top 20 pathways representing Archetype 3 reveal links between the urea cycle 
(including the biosynthesis and recycling of intermediates like L-ornithine and L-citrulline), 
nucleoside biosynthesis, isoprenoid biosynthesis, and vitamin B6 biosynthesis (Figure 2E, 
Figure 3C, Table S2). Specifically, the urea cycle and histidine degradation pathways are 
indirectly connected to nucleoside biosynthesis through key intermediates such as 
fumarate/L-aspartate and L-glutamate, respectively, which integrate nitrogen and carbon 
metabolism (Figure 3C). Histidine degradation produces ammonium, which is further 
processed in the urea cycle, creating a direct link between these pathways in nitrogen 
metabolism. Isoprenoid biosynthesis and vitamin B6 pathways share the same initial 
compounds such as D-glyceraldehyde 3-phosphate and pyruvate (Figure 3C). Vitamin B6 is a 
cofactor essential for numerous enzymatic processes, including those in the urea cycle,  
amino acid metabolism and nitrogen metabolism (Figure 3C). Overall, this network 
demonstrates the tight metabolic integration between nitrogen metabolism through the urea 
cycle and histidine degradation and the production of essential components and cofactors 
(nucleosides and vitamin B6).  

Together, these archetypes highlight specific metabolic strategies which might favor different 
ecosystems and functions with different impacts on the host’s physiology and health: 
Archetype 1 may favor microbes that thrive on abundant carbohydrates supporting structural 
and essential cellular component biosynthesis for microbial growth (microbial cell wall, BCAA). 
Archetype 2 may favor microbes that use multiple energy harvesting routes supporting 
metabolic flexibility with specialization in fatty-acid metabolism. Finally, Archetype 3 may favor 
microbes with enhanced nitrogen metabolism capabilities, particularly in processing nitrogen 
compounds (including amino-acids) through urea cycle and related pathways. 
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Figure 3 Pathways defining each archetype focuses on specific metabolic strategies favoring 
different cellular functions.  Graphs of the compounds involved in the reactions of the top 20 
pathways characterizing (A) Archetype 1, (B) Archetype 2 and  (C) Archetype 3 (STAR 
Methods). Each pathway and its nodes are given a single color that matches the legend on the 
right. Each node represents a single compound in a pathway’s reactions. Nodes / compounds 
that are duplicates, i.e. found in multiple pathways, are connected with a dashed black line to 
help visualize core compounds in the archetype and similarities between the pathways’ 
reactions. Label boxes were added to highlight the core components defining each archetype. 
Common compounds, such as H+, phosphate, ATP, ADP, H2O, NADP+, NADPH, NADH, NAD+, 
CO2, coenzyme A, AMP, dioxygen, hydrogen carbonate, and diphosphate, were excluded to 
reduce visual noise. Interactive graph html files can be found in https://osf.io/tvu52/ 
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Functional archetypes display distinct associations with gut microbiome compositional 
enterotypes 

To investigate potential relationships between functional archetypes and compositional 
community structures, we analyzed enterotype distributions across our cohort and functional 
archetypes. Using the recent Enterotyper tool24, we first classified samples into three 
enterotypes defined by predominant taxa: Bacteroides/Phocaeicola, Prevotella, or Firmicutes 
(STAR Methods). While the Firmicutes enterotype was the most prevalent in our dataset (55 %, 
32% Bacteroides, 12% Prevotella), samples classified as Prevotella enterotype showed notably 
stronger classification scores (median classification strength 0.69, 0.55 for Bacteroides, 0.54 
for Firmicutes), suggesting more distinct compositional profiles (Figure 4A). 

Our analysis revealed significant but not exclusive associations between functional archetypes 
and compositional enterotypes. Notably, samples exhibiting high scores for archetype 1 
(characterized by enhanced carbohydrate metabolism and BCAA and cell wall component 
biosynthesis potential) showed strong correlation with the Prevotella enterotype classification 
(Figure 4B-C). A similar but less exclusive pattern emerged between archetype 3 (elevated 
nitrogen and amino acid metabolism potential) and the Bacteroides/Phocaeicola enterotype 
(Figure 4B-C). Samples classified with higher probability as Firmicutes enterotype clustered 
primarily in the densely populated region of the archetypal space, characterized by either 
elevated archetype 1 scores with intermediate archetype 3 scores, or high archetype 2 scores 
(distinguished by enhanced energy-yielding potential, particularly in fatty acid metabolism and 
central carbon pathways). 

Overall, these results indicate that while specific associations exist between functional 
archetypes and enterotypes, the relationship is not strictly deterministic. The observed 
patterns suggest that similar functional capabilities can be maintained across different 
compositional configurations in the adult human gut microbiome. 
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Figure 4​ Functional archetypes display distinct associations with gut microbiome 
compositional enterotypes (A) Number of samples and classification probability for each 
enterotype (B) Scatterrplots depicting relationships between usage of each archetype and 
classification probability of each enterotype. Lowess curves are depicted in red. (C) 
Multidimensional scaling (MDS) representation of samples based on their archetypal 
compositions colored by the classification probability of each enterotype. 
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Functionally diverse archetype 2 shows enhanced temporal stability 

To assess the stability of archetypal states, we analyzed the variation in archetype 
contributions of samples collected across consecutive visits from the same individuals (7 
studies; n subjects = 656; n samples = 1557; range visits 2-6 in the span of 2 - 730 days; Table 
S3) . Notably, archetype 2, which is characterized by high pathway diversity and enrichment in 
energy-yielding processes, showed more consistent scores between consecutive samples, 
with changes distributing more tightly around zero compared to the broader variations seen in 
archetypes 1 and 3 (Figure 5A). 

We further classified samples into high (≥0.66) and medium (0.33-0.66) archetype usage 
categories to examine state transitions. Individuals exhibiting high usage of a particular 
archetype showed substantial persistence of that state, with maintenance percentages of 
41.6%, 49.5%, and 45.3% for archetypes 1, 2, and 3, respectively (Figure 5B). In contrast, 
samples with medium usage levels showed lower state stability, with persistence percentages 
ranging from 8% to 27.5%. These findings suggest that while strongly committed archetypal 
states tend to persist over time, microbiomes with intermediate archetype contributions 
display greater temporal flexibility in their metabolic configurations. 
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Figure 5​ Temporal dynamics of functional archetype scores in the human gut 
microbiome 

(A) Density plot showing the difference between samples’ archetype values that are from the 
same subject. Colors reflect scores for the different archetypes: type 1 (blue), type 2 (red) and 
type 3 (yellow) (B) Heatmap showing the probability of transitioning between archetype states 
for subjects with multiple samples. Sample states were categorized based on their archetype 
usage levels: high type usage (≥ 0.66 archetype value), if they did not have a high type usage 
then they were set to medium type usage (0.33–0.66 archetype value). 
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Functional archetypal space captures disease-associated microbiomes and reveal key 
confounders 

To determine whether the archetypal space captures disease-associated gut microbiomes, we 
curated metagenomic profiles from studies of patients with inflammatory bowel disease (IBD; 
3 studies), type 2 diabetes (T2D; 3 studies), and colorectal cancer (CRC; 5 studies) (Table S4A; 
STAR Methods). Using the model trained on healthy samples, we mapped the 
disease-associated samples and their respective controls onto the archetypal space (Figure 
6A). Notably, these samples aligned within the same archetypal framework, but their 
distributions differed significantly from those of healthy controls included in the same studies 
(Figure 6B). IBD samples exhibited higher usage of Archetype 2 compared to their controls, 
while CRC samples showed significantly lower Archetype 2 usage (Kolmogorov–Smirnov test, 
p ≤ 0.05). Similarly, T2D samples displayed distinct distributions compared to healthy controls, 
with significant differences in the usage of both Archetype 1 and Archetype 3 
(Kolmogorov–Smirnov test, p ≤ 0.05). 

Given the functional differences between archetypes, we next investigated whether archetype 
usage could confound the identification of differentially represented pathways between 
disease and healthy states (STAR Methods). Across all diseases (IBD, T2D, and CRC), many 
pathways identified as differentially represented between disease and healthy samples were 
also strongly associated with archetype usage. Adjusting for archetype usage significantly 
reduced the number of differentially enriched pathways (Figure 6C; Table S4B-F). For instance, 
when comparing IBD to healthy samples, pathways initially identified as differentially enriched 
(n = 187, FDR < 0.01) also largely reflected Archetype 2 usage, further underscoring the 
confounding influence of archetype-specific functional variability (Figure 6D). 

Further investigation revealed a significant interaction between IBD status and archetype 
dominance, defined here as the archetype with highest usage per sample (Figure 6E-F; Table 
S4G-I). Stratified analysis based on archetype dominance revealed distinct disease-associated 
pathways varying by dominant archetype (Figure 6E-F; Table S4G-I).  

In IBD samples dominated by Archetype 1 - characterized by high carbohydrate metabolism 
potential - we identified 32 significant pathways including 18 unique to this archetype (Figure 
6E; Table S4). Unique pathways included processes related to thiamine biosynthesis, a 
process critical for carbohydrate metabolism and the production of short-chain fatty acids 
(SCFAs). Additionally, molybdopterin biosynthesis, essential for anaerobic respiration in 
bacteria, was significantly overrepresented in the gut microbiome of IBD patients compared to 
controls. This pathway is particularly relevant given its potential role in the overgrowth of 
Enterobacteriaceae in the inflamed gut.38 

Conversely, IBD samples dominated by Archetype 3 - associated with high processing 
capabilities of nitrogen compounds (including amino-acids) - exhibited unique enrichment of 
pathways involved in NAD salvage, the biosynthesis of amino-acid (L-cysteine, L-glutamine, 
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arginine and polyamines), and fatty-acid related pathways, including one specific to Escherichia 
coli. Fatty-acids play important roles for bacterial membrane synthesis while peptidoglycan 
biosynthesis essential for bacterial cell wall integrity, was also uniquely overrepresented in gut 
microbiomes of IBD patients in this archetype (Figure 6F).  

Notably, ten differential pathways were shared among IBD samples closer to Archetype 1 or 3, 
including those involved in the TCA cycle, nucleotide degradation, starch metabolism, and 
heme b biosynthesis. In the unstratified analysis, differential pathways between IBD and 
controls captured Archetype 2, with IBD samples more likely to have high Archetype 2 usage 
characterized by high energy-harvesting potential through the TCA cycle. The consistent 
identification of TCA cycle pathway suggests that dysregulation of central energy metabolism 
is a common feature across IBD samples, regardless of archetype dominance.  

Overall, these findings reveal substantial inter-individual variability in the functional metabolic 
landscape of gut microbiomes, presenting a significant confounding factor in differential 
analyses when comparing disease and control groups. The archetypal framework we 
developed provides a robust approach to mitigating these confounding effects, reducing false 
positives, and uncovering archetype-specific functional changes. These insights, for example, 
offer a novel perspective on IBD gut microbiome subtypes and their specific or common 
metabolic alterations depending on their overall archetypal functional landscape. 
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Figure 6. (A) Density plots of healthy samples (left) and diseased samples (right) from type 2 
diabetes (T2D),  colorectal cancer (CRC) and inflammatory bowel disease (IBD) studies, shown 
in archetypal space after Multidimensional Scaling (MDS). Samples of the opposite health 
status are displayed in grey. (B) Violin plot of archetype usage in diseased study samples, 
stratified by dominant archetype and colored by disease status. (C) Heatmaps of pathways 
found to be differentially expressed (FDR < 0.01) using MaAslin2, with samples ordered by 
pathway expression. (C) Venn diagrams comparing the number of differentially expressed 
pathways between healthy and diseased samples from T2D with and without adjustment for 
archetypes usage. Pathway names are listed in Table S4B-F. (D) Heatmaps of pathways 
differentially expressed (FDR < 0.01, Table S4E) between healthy and IBD samples. Samples 
are ordered based on the ranksum of pathways relative abundance (z-score) depicted on top 
of heatmap. Metadata at the bottom of the heatmap provide health status and sample’s usage 
scores for each archetype (E) Venn diagram showing the count of differentially expressed 
pathways (FDR < 0.01) between healthy and IBD samples, stratified by dominant archetype. (F) 
Heatmaps of pathways differentially expressed (FDR < 0.01) between healthy and IBD 
samples, stratified by dominant archetypes 1 (left), 2 (middle), and 3 (right). Pathway names 
are listed in Table S4G-I. 

Discussion 

Our deep archetypal model revealed that global gut microbiome functional potential can be 
represented by three archetypes, each defined by a high potential to express pathways within 
specific metabolic frameworks. Specifically, the three archetypes are skewed toward distinct 
metabolic features: sugar-related metabolism, whose products feed into branched-chain 
amino acid (BCAA) and cell wall component biosynthesis (Archetype 1); fatty acid metabolism, 
whose products fuel the TCA and glyoxylate cycles (Archetype 2); and amino acid metabolism 
and nitrogen metabolism through  the urea cycle and related pathways (Archetype 3). 

While most gut microbiome communities are a blend of these archetypes, some communities 
align closely with a single archetype, potentially reflecting adaptation to specific environmental 
or host-related conditions. For example, a diet consistently rich in complex carbohydrates 
might promote a community resembling Archetype 1, while a diet rich in fatty acid or protein 
might promote a community resembling Archetype 2 and 3, respectively. Similarly, host 
genetic, physiological factors or disease could create conditions that favor one archetype over 
others. In some cases, a community dominated by a single archetype could represent a 
functionally specialized microbiome optimized to meet the host's needs.  

Our findings reveal a nuanced relationship between functional archetypes and compositional 
enterotypes in the human gut microbiome. While specific associations exist between 
functional archetypes and enterotypes, the relationship is not strictly deterministic. The strong 
association between Prevotella enterotype and Archetype 1 reflects biological patterns 
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consistent with the literature, as Prevotella-dominant communities are known for their 
enhanced capacity to metabolize plant-derived carbohydrates and produce SCFAs from diets 
rich in complex carbohydrates and dietary fibers.18,39 Similarly, the connection between 
Bacteroides/Phocaeicola enterotype and archetype 3's elevated amino acid metabolism 
potential corresponds with this enterotype's known association with protein-rich Western 
diets.18,39 However, compositional configurations still show some flexibility in their functional 
profiles, supporting the concept of functional redundancy in microbial ecosystems, where 
different community structures can achieve similar metabolic capabilities. These insights have 
important implications for microbiome-based interventions, suggesting that targeting 
functional capabilities rather than specific taxonomic compositions might be a more robust 
approach for therapeutic strategies. 

Proximity to archetypal states confers functional stability of gut microbial communities. In 
particular, Archetype 2 represents the most stable and diverse state, likely due to its diverse 
energy harvesting capabilities including fatty acid metabolism, the TCA cycle, and the 
glyoxylate shunt. This metabolic flexibility through multiple energy-generating pathways could 
provide enhanced resilience to dietary fluctuations and day-to-day environmental 
perturbations. 

The relationship between archetypal extremes and ecosystem stability presents intriguing 
questions about the functional stability of disease states. While disease samples are 
represented within the same archetypal space, they do not necessarily occupy extreme 
positions nor reflect simple imbalances in archetype usage. Instead, we observed 
disease-specific enrichments, such as IBD's association with Archetype 2. This finding aligns 
with previous findings linking disruptions in the TCA cycle and its intermediates, such as 
succinate, to heightened inflammation and IBD pathogenesis.40,41 However, these patterns 
warrant careful interpretation, as they might reflect either true functional shifts favoring 
disease states or sampling biases due to the relatively limited scale and diversity of existing 
case-control studies. Such biases could also stem from underrepresentation of diseases 
across the full archetypal space. 

Importantly, across all curated disease studies, the distributions of disease samples within the 
archetypal space consistently differed significantly from those of healthy groups. These 
differences, rooted in the distinct metabolic profiles of the archetypes, can introduce 
confounding when directly comparing disease and healthy samples. Our findings further 
revealed interactions between IBD-associated changes and archetypal usage, consistent with 
previous findings identifying subtype-specific gut microbiome signatures in IBD patients.42–45 
These signatures may reflect differences in clinical presentation (e.g., constipated vs 
non-constipated) or disease stages (e.g., quiescent vs inflamed). For instance, Gargari et al. 
identified a subgroup of non-constipated IBD patients with higher levels of SCFAs which aligns 
with our findings in Archetype 1-dominant IBD samples. Archetype 1 is characterized by high 
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carbohydrate metabolism potential and these IBD samples exhibited enrichment for thiamin 
biosynthesis, a pathway critical for SCFA production through the bacterial fermentation of 
carbohydrates. These archetype-specific functional changes could inform 
microbiome-targeted interventions, such as dietary strategies aimed at lowering the 
fiber-fermenting microbial components of the gut microbiome. Notably, low-fiber diets have 
previously been shown to be potentially more effective in IBD patients with high fecal SCFA 
levels.43,45 Similarly, our findings highlight the potential for targeting specific metabolic 
pathways in Archetype 1-dominant IBD samples. For example, tungstate has been shown to 
prevent Enterobacteriaceae overgrowth in the inflamed gut by replacing molybdenum in the 
molybdopterin cofactor.38 This substitution disrupts molybdopterin-dependent enzymatic 
pathways, which are essential for anaerobic respiration in Enterobacteriaceae—a pathway we 
identified as uniquely enriched in Archetype 1-dominant IBD samples. 

In contrast, Archetype 3-dominant IBD samples exhibited enrichment of pathways involved in 
known inflammatory processes, including immune responses linked to E. coli adherence. 
These pathways include NAD salvage46,47, amino acid biosynthesis48–50, and the production of 
immunogenic cell wall-derived molecules, which may also promote the proliferation of 
adherent-invasive Escherichia coli.51–53 These findings underscore the distinct functional and 
inflammatory mechanisms associated with different archetypes in IBD microbiomes. 

Overall, our findings underscore the need for large-scale studies with comprehensive sampling 
of diverse functional microbiomes. Such studies could improve our understanding of the full 
archetypal landscape and help address potential sampling biases. Incorporating archetype 
values as a confounding variable or stratification factor in differential analyses reduces 
inter-individual variability, mitigates confounding, and reveals novel pathways specifically 
altered in IBD gut microbiomes based on the dominant functional archetypes. 

Limitations 

Since our data is derived from whole genome sequencing (WGS) of microbial DNA, the 
biological archetypes we identified are based on the functional potential encoded within the 
genomes of the gut microbiome, rather than the actual functional activity occurring at the time 
of sampling. This means our analysis reflects the possible capabilities of the gut microbiome 
based on its genetic composition, but it does not capture the dynamic functional state that 
would be observed through techniques like metatranscriptomics or metaproteomics, which 
measure RNA transcripts and proteins, respectively. 

Supplemental information 

Document S1. Figures S1–S3 and Tables S1 – S3 
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Table S4. Excel file containing (A) Summary statistics of studies with disease subjects. (B-I)  
list of differentially expressed pathways between (B) healthy and type 2 diabetes samples 
without archetype values adjustment (C, D) healthy and colorectal cancer samples (C) without 
archetype value adjustment (D) with archetype value adjustment. (E, F) healthy and 
inflammatory bowel disease samples (E) without archetype value adjustment (F) with 
archetype value adjustment. (G-I) healthy and inflammatory bowel disease samples when 
stratifying samples by dominant archetype (G) archetype 1 (H) archetype 2 (I) archetype 3, 
related to figure 6. 

Lead Contact 

Further information and requests for resources should be directed to and will be fulfilled by the 
lead contact, Vanessa Dumeaux (vdumeaux@uwo.ca) 

Materials availability 

This study did not generate new unique reagents. 

Data and code availability 

The functional profile dataset and code used for processing of the raw data and generation of 
the figures in this manuscript is available through the Open Science Foundation (OSF) 
repository (https://osf.io/tvu52/) and its associated github repositories. 
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STAR Methods 

Compendium data curation, preprocessing, transformation, and filtering 

We curated 11309 publicly available whole genome sequencing (WGS) samples’ data from 
healthy adult (age ≥ 18) stool samples using several large dataset repositories such as 
GMrepo and curatedMetagenomicData R package as well as datasets under controlled access, 
namely LifeLines DEEP (EGAR) and Milieu Interieur (WGM) (Figure 1A, Table 1, Table S1).  

Each sample underwent processing with a computational pipeline designed to use the latest 
genome annotations and minimize false positives, converting raw reads into relative pathway 
abundances (Figure S1). First, the raw reads were preprocessed for quality control and adapter 
removal using fastp54 with the following parameters: --trim_poly_x --trim_poly_g -p 
--length_required 40 --cut_front --cut_tail --cut_mean_quality 25. 
Based on our experience55 and corroborated by previous studies56,57, when using properly 
defined thresholds and a comprehensive reference database, the Kraken2+Bracken58,59 toolset 
delivers superior performance to estimate microbial composition of gut microbiomes. We 
therefore used Kraken2 with confidence threshold of 0.15  to align reads to the HumGut 
database60  following the Genome Taxonomy Database (GTDB) classification scheme61 and 
the human genome downloaded from NCBI to identify and remove contamination. 

Biochemical pathways/functions were then identified using HUMAnN3 v3.762 based on species 
identified using Kraken2+Bracken and HUMAnN3 reference databases including the UniRef90 
database filtered to only include proteins associated with a level-4 enzyme commission 
category. HUMAnN3 quantified pathways in units of RPKs (reads per kilobase) and counts 
were further normalized for library size where read counts for each sample are constrained to 
sum to 1 millions (copies per millions, CoPM).  

Functional pathways data samples were filtered for total read count (library size) of 100,000 to 
2,000,000 reads filter and functional pathways that are present in less than 10% of the samples 
were removed along with studies with less than 30 samples, 9838 samples were left after 
filtering (Figure 1B-C, Figure S2).  

As expected, we observed a significant batch effect associated with sample study source 
(Figure S2C), and applied batch correction using ComBat Seq37 (Figure S2D). To further 
confirm appropriate batch effect adjustment, we compared the assigned archetype values of 
the second largest study in the dataset (LifeLines DEEP / EGAR, n = 1131), which exhibited the 
most significant batch effect, to samples from other studies (Figure S2C). The violin plot 
illustrates that there is no bias between the study source of the samples and how each 
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archetype defines a sample, unlike when batch correction is not performed, indicating the 
effectiveness of ComBat's batch correction (Figure S3A-B). Finally, to ensure that this 
correction did not alter the distribution or sparsity of the data, a comparison between values in 
the original and batch-corrected matrices was conducted. Overall, the values in both datasets 
were overwhelmingly similar , and the sparsity (zero counts) of the data remained identical 
(Figure S3C-E).  

To determine the compositional enterotypes of our samples we used the recent Enterotyper 
webtool24 by submitting the microbial species raw counts and exporting the classification 
probability table. Microbial species raw counts were filtered for species that were present in at 
least 10% of samples, filtered against studies with less than 30 samples and batch corrected 
using ComBat-seq.37  

Statistical distribution of pathway abundance 

Following batch correction, non-linear archetypal analysis was performed by integrating 
archetypal analysis with a variational autoencoder (Figure S1). Prior to model training, the 
distribution of the count data was assessed to inform the parameterization of the decoder. 
Pathway abundance data (RPK) were modeled using the generalized additive model for 
location, scale, and shape (GAMLSS) as implemented in the scDesign3 R package.63 The 
Akaike Information Criterion (AIC) values were calculated for Poisson, zero-inflated Poisson 
(ZIP), Gaussian, negative binomial (NB), and zero-inflated negative binomial (ZINB) 
distributions to evaluate their fit to the data. 

NB and ZINB had the lowest AIC values (Figure S4A-B), and simulated data using these 
distributions (Figure S4C) produced UMAP visualizations with a structure and distribution 
qualitatively similar to the original dataset.. Ultimately, we selected NB to parameterize our 
decoder, as it is less complex, supports Combat-seq batch correction assumptions, and 
provides a comparable fit to the data than ZINB. 

Deep Archetypal Analysis 

We used deep archetypal analysis as implemented in scAAnet.64 The total loss function 
comprised archetypal loss and reconstruction loss. Archetypal loss measured the deviation 
between fixed archetypes and inferred archetypes in the latent space, while reconstruction loss 
was calculated as the negative log-likelihood of the NB distribution using model-estimated 
mean and dispersion parameters.  

The scAAnet model was configured with a batch size of 64 and a hidden layer width of 128. 
The activation function used was a rectified linear unit (ReLU). The model was trained for up to 
1000 epochs (each epoch representing one full training cycle), with 20 warm-up epochs. Early 
stopping was enabled if the loss did not improve for 100 epochs, and the learning rate was 
reduced if the loss failed to improve for 10 epochs. The initial learning rate was set to 0.01. To 
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identify the optimal number of archetypes (K value) for the data, the model was tested with K 
values ranging from 2 to 7. Archetype and usage stability were assessed across 8 random 
states (0 to 7). The dispersion parameter was set to be unique for each pathway. 

Number of archetypes (K value) selection 

Two metrics are used to determine the optimal K value  (number of  archetypes), archetypes’ 
stability and samples’ archetype usage consistency64, as implemented in scAAnet. Archetype 
stability was assessed by performing K-means clustering on the archetype spectra derived 
from multiple random initializations (n = 8) and computing the Euclidean distance silhouette 
score to evaluate the quality and robustness of the inferred archetypes at each K value. This 
stability metric ranges from 0 to 1, with higher values indicating more robust archetypes. 

To assess consistency in sample archetype usage, we identified the dominant archetype for 
each sample across multiple random states (n = 8). For each pair of samples, we calculated 
the proportion of times they were assigned to the same archetype, resulting in a consensus 
matrix C that indicates the probability of two samples being assigned to the same archetype. 
Using these pairwise probabilities as measures of similarity, we performed average linkage 
hierarchical clustering to reorder the samples. We then calculated the cophenetic distance for 
each pair of samples based on the hierarchical clustering dendrogram, reflecting how similar 
two samples are within the dendrogram. The cophenetic correlation coefficient (ranging from 0 
to 1) compares these cophenetic distances with the original assignment probabilities, 
providing an overall measure of clustering stability. 

In our analyses, both stability metrics peaked at K = 3 (Figure S5), which was therefore 
selected for downstream analyses. 

Determining the most representative random state 

We identified the most representative state from 100 random states (K = 3) using two key 
metrics: cosine similarity and archetype distinctiveness. Cosine similarity was used to assess 
how closely each state’s archetypes aligned with the mean archetype configuration, ensuring 
consistency. Simultaneously, we measured the distinctiveness of archetypes by measuring the 
euclidean distances between the 3 archetypes in each random state, to uphold the core 
principle of archetypal analysis—identifying extreme points. Our final scoring formula 
combined similarity to the mean with half-weighted distinctiveness, striking a balance between 
avoiding outlier states and maintaining representativeness. The selected state is visualized in 
the K-means clustering plot (Figure S6), highlighting its optimal fit for subsequent analyses. 

Pathways’ compounds visualization using graphs 

Network graphs were created to represent pathway interactions. The input data was sourced 
from the MetaCyc database65 and consisted of edges annotated with pathway-specific 
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metabolites. Nodes corresponding to compounds shared across multiple pathways were 
connected using dashed gray edges to highlight duplication and identify clusters of shared 
compounds. Common compounds, such as H+, phosphate, ATP, ADP, H2O, NADP+, NADPH, 
NADH, NAD+, CO2, coenzyme A, AMP, dioxygen, hydrogen carbonate, and diphosphate, were 
excluded to reduce visual noise. A small subset of pathways did not have graph data available 
and therefore were not included in the visualization - this was the case for 4 pathways in the 
top 20 defining archetype 2: PRPP-PWY: superpathway of histidine, purine, and pyrimidine 
biosynthesis; TCA-GLYOX-BYPASS: superpathway of glyoxylate bypass and TCA; TCA: TCA 
cycle I (prokaryotic); METSYN-PWY: superpathway of L-homoserine and L-methionine 
biosynthesis; however they often had other highly similar pathways presented in the graph. 

The finalized graphs were exported as HTML files, allowing interactive exploration and further 
visual refinement.  

Archetype stability analysis  

To assess the stability of the archetypes, we filtered our dataset to identify healthy subjects 
with at least two unique samples, which yielded seven studies (n = 656 subjects, 1,557 
samples). These subjects had 2–6 visits over a 2–730 day span (Table S3). We subtracted the 
archetype values between consecutive visits to calculate differences. For analyses based on 
archetype usage, samples were categorized as high usage (≥ 0.66) or medium usage 
(0.33–0.66). 

Differential analysis of disease samples using MaAsLin2 

We curated metagenomic profiles from studies of patients with inflammatory bowel disease 
(IBD; 3 studies), type 2 diabetes (T2D; 3 studies), and colorectal cancer (CRC; 5 studies) (Table 
S4A). We then applied MaAsLin266 to identify significant functional differential relative 
abundances in gut microbiomes between healthy individuals and those with inflammatory 
bowel disease (IBD), type 2 diabetes (T2D) and colorectal cancer (CRC) samples, respectively. 
All analyses were performed using the negative binomial model to address the compositional 
nature of the microbiome and account for overdispersion in the data and cumulative sum 
scaling normalization to adjust for library size, and Benjamini-Hochberg FDR to adjusted for 
multiple testing, as implemented in MaAslin2 R/Bioconductor (V1.18.0). In all analyses, 
subject ID and study were modeled as random effects to account for inter-individual variability 
and differences between datasets, respectively. 

We conducted the following analyses: 

1.​ Traditional analysis without archetype  adjustment: Disease status (disease vs. healthy) 
was included as the fixed effect without any adjustment for archetypes. 
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2.​ Analyses with archetype adjustment: These models extended the “traditional” analysis 
by adding three fixed-effect to adjust for samples’ archetype usage (archetype1, 
archetype2, and archetype3) 

3.​ Stratified analyses with archetype adjustment: Samples were stratified based on their 
dominant archetype (highest archetype value), and each stratified group was analyzed 
separately. For each group, the model included disease status as a fixed effect along 
with archetype usage values for archetype1, archetype2, and archetype3. 
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