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Abstract 

Ductal Carcinoma in Situ (DCIS) management is challenged by the absence of reliable markers 
predictive of radiotherapy (RT) response, leading to both overtreatment of indolent disease and 
inadequate treatment for aggressive cases. Through whole-exome sequencing of 147 DCIS 
cases, we characterized the genomic landscape and identified markers for disease prognosis - 
specifically the risk of local recurrence (in situ or invasive) within 10 years after diagnosis. Our 
analysis revealed that pure DCIS is characterized by frequent mutations in genes governing 
tissue architecture, with established cancer drivers (PIK3CA, TP53) present at lower 
frequencies (~10%) than in invasive disease. These early driver mutations, while potentially 
conferring fitness advantages to pre-malignant cells, lack prognostic value, suggesting they 
may act as fitness enhancers rather than direct drivers of progression. A subset of younger 
patients exhibited distinct mutational processes with increased mutational burden, though this 
was not associated with recurrence risk. We identified twelve mutually exclusive genes 
significantly associated with early recurrence risk across the entire cohort, functioning in 
cytoskeleton and vesicle dynamics (MYO7A, STON1), signal transduction (NPFFR1), and 
DNA/RNA regulation. In RT-treated patients specifically, we identified 27 co-occurring variants 
in genes controlling cytoskeletal organization (SORBS1, KRT1), cell polarity (WWC1, PATJ), and 
extracellular matrix interactions (COL5A3, RELN) that were also associated with early local 
recurrence (within 3 years). Copy number analyses revealed that pure DCIS already harbors 
molecular subtype-specific patterns characteristic of invasive disease with novel 
recurrence-associated alterations including gains at 11q11-12 and 5p14, containing genes 
involved in cell adhesion. These findings suggest that certain DCIS lesions harbor genetic 
alterations that may compromise tissue homeostasis and create an epithelial 
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microenvironment conducive to disease relapse, some specifically associated as following 
RT-induced stress, providing novel biomarkers for treatment optimization in DCIS patients. 

Introduction 

Ductal Carcinoma in Situ (DCIS) is a non-invasive, non-obligate precursor of invasive breast 
cancer characterized by clonal proliferation of neoplastic cells confined within the breast 
ducts1. DCIS is primarily detected through screening and diagnostic mammograms due to its 
characteristic presentation with microcalcifications. The widespread implementation of 
mammographic screening programs has led to a substantial increase in DCIS detection, with 
incidence rates rising from four to eleven cases per 100,000 women between 1993 and 
20072,3.  This trend is expected to continue as screening programs expand to include younger 
women4. 

There are currently no definitive markers to predict which cases will progress to invasive, 
life-threatening lesions5,6. Consequently, treatment, usually involving breast-conserving surgery 
(BCS) followed by breast radiation therapy (RT), is recommended for all women diagnosed 
with DCIS5. However, many DCIS would not transit to invasive life-threatening disease even if 
left untreated7. The absence of known markers predictive of a patient benefit to RT results in 
both over-treatment for indolent lesions and under-treatment for some aggressive DCIS likely 
to evolve to an invasive state; markers that would allow us to identify such cases would allow 
for tailored treatment that could include for example full mastectomy, adjuvant systemic 
treatments for patients who may experience in situ or invasive local recurrence (LR) despite 
receiving RT8 or more frequent watch and wait strategies for patients with indolent lesions. 

Cancer emerges from the accumulation of genetic aberrations in neoplastic cells and genomic 
instability9. Mutations can disrupt normal cellular processes, leading to uncontrolled cell 
growth, impaired DNA repair, and other aberrant cellular behaviours that may contribute to 
cancer development9. Driver mutations, a subset of somatic mutations, confer selective 
advantages to the neoplastic epithelial cells directly by  increasing their relative fitness and 
therefore an increase in abundance of these driver mutations is observed  in tumor cell 
populations10. In the context of DCIS, the accumulation of driver mutations may play a role in 
guiding the transition from DCIS to invasive breast cancer, and may determine whether a 
patient will benefit or not from RT. 

Previous studies have revealed important insights into DCIS progression by highlighting 
specific mutations and chromosomal alterations that may influence the progression towards 
invasive disease. Many of these studies however, focus on synchronous DCIS – concurrent 
presentation of DCIS and invasive ductal carcinoma (IDC). These studies explore the overlap 
between DCIS and IDC, and recognize the potential differences between them. However these 
findings might be reflective of a timepoint beyond the evolutionary bottleneck, and the full 
repertoire of mediators of the transition from DCIS to IDC or associated with a future risk of LR 
cannot be established from these studies11. 
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 TP53 and PIK3CA12–18 are perhaps the most frequently observed mutations in breast cancer 
and are often characterized as likely drivers of tumorigenesis promoting growth and spread of 
cancer cells. Although this need not necessarily be the case since mutant field clonalization, 
for example,  could  equip pre-malignant cells with additional (epi-) genetic mutations 
conferring fitness advantages and allowing them to expand to ductal regions without directly 
driving invasive behavior11. This suggests that driver mutations, alongside frequently mutated 
genes, may serve as these early fitness enhancers rather than drivers of progression. Several 
copy number aberrations (CNAs) have also been identified by these studies11–16,18–21 including 
frequent gains at 1q, 8q, 11q, and 17q, and losses at 16q, however the specific associations of 
these CNVs to DCIS prognosis remain unclear. 

To address these critical gaps, we conducted comprehensive exome sequencing analysis of 
147 pure DCIS cases, including patients treated with and without radiotherapy, to investigate 
markers of local recurrence within 10 years of diagnosis. Our study reveals a distinct 
mutational landscape in pure DCIS and identifies novel genomic alterations associated with 
tumor grade, molecular subtypes, and patient age. Most importantly, we discovered specific 
variants and CNAs predictive of local recurrence risk, including genetic markers associated 
with RT response. These findings provide insights into the genomic determinants of DCIS 
prognosis and treatment response, establishing a foundation for improved risk stratification 
and personalized treatment strategies for DCIS patients. 

Results 

A unique cohort of pure DCIS patients 

We assembled the largest cohort of pure DCIS patients treated with BCS, with or without 
subsequent RT, incorporating comprehensive genomic profiling through whole-exome DNA 
analysis of primary DCIS tumors and matched normal tissues (n = 147; Table 1). The study 
design was balanced to include half of the patients who experienced an ipsilateral invasive or 
in-situ local recurrence within a 10 year follow-up cutoff, occurring at a median of 7.4 years 
and 2.7 years time, respectively. Most tumors were of intermediate to high grade, spanning all 
five molecular subtypes, with no multifocality and negative margins (Table 1).  
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  Tumor-Normal pairs 

  
Without Local 

Recurrence (n = 75) 
With Local 

Recurrence (n = 72) 

Time to Recurrence in years 

Median (Range) 

DCIS NA 2.7 (0.5 – 22.0) 

Invasive NA 7.4 (0.8 – 20.5) 

 

Radiotherapy (RT) 
Yes 41 32 

No 34 40 

 

Clear Margins 

Positive 3 7 

Negative 63 56 

Undetermined 9 9 

 

Tumor size (mm), 

Median (Range) 
15 (4 - 47.2) 17 (2 - 90) 

 

Nuclear Grade 

Low 1 3 

Moderate 48 39 

High 26 30 

 

Multifocality 

Present 19 17 

Absent 32 40 

Undetermined 24 15 

 

Age 

<50 Years Old 30 22 

50-60 Years Old 26 22 

>60 Years Old 19 28 

 

PAM50 Subtype (Pearson 
Correction) 

Basal-like 9  12 

Her2-like 8 10 

LumA 22  10 

LumB 7  14 

Normal-Like 15  10 

Table 1. Patient and tumor clinical attributes 
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Mutational landscape of DCIS reveals distinct processes driving high mutational burden in 
early-onset cases 

The mutational load of pure DCIS lesions varied considerably, ranging from 3 to 3,482 variants 
per sample, with a median of 75 non-synonymous variants. The majority (74.2%) were  
missense mutations, constituting approximately 52K unique variants identified in ~14K genes. 

As expected, most mutations are of C>T type (barplot in Fig. 1), a common mutational pattern 
attributed to the spontaneous deamination of 5-methylcytosine, a process frequently observed 
in many cancer genomes22,23. Spontaneous deamination can be exacerbated in FFPE samples 
due to DNA damage24. FFPE-related mutational artefacts are known to resemble certain 
COSMIC signatures25, such as SBS30 and SBS126.  During library preparation, formalin-induced 
DNA lesions are chemically repaired with unrepaired profiles resembling SBS30 and repaired 
profiles resembling SBS126. While SBS30 was not identified in our dataset, SBS1 was detected 
in a large number of samples (Fig. 1). SBS1, commonly found  in tumor genomes, is difficult to 
distinguish from repaired FFPE-related artifacts due to their high similarity23,26. However, 
previous research has demonstrated that mutational profiles from repaired FFPE samples 
closely match true tumor mutational profiles26, and we  expect that our careful processing of 
mutation calling-pipeline minimizes the impact of these artefacts24. 

Interestingly, a subset of DCIS samples exhibit a significantly higher mutational load, 
characterized by an increased in frequency of C>G, T>C, and C>A mutations, and enrichment of 
specific SBS signatures including SBS26, SBS7b, and SBS5 (Fig. 1, samples on the right). The 
causes underlying these mutational signatures remain incompletely understood. However, 
SBS26 has been linked to impaired mismatch repair and microsatellite instability. These cases 
were not more likely to have a recurrence, of a higher grade or of a specific molecular subtype 
but were predominantly found in younger patients (< 50 years).  

Not all younger patients had a lesion with high TMB. Overall, younger age at diagnosis (<50 
years) was associated with a higher risk of LR (Hazard ratio [HR] = 15.92, 95% CI: 
1.94-2066.75, p = 0.005) compared to the middle age group (50-60 years) and showed 
significantly greater benefit from RT (interaction HR = 0.02, 95% CI: 0.0001-0.33, p = 0.004; 
likelihood ratio test p = 0.046) but this enhanced RT response was not associated with the 
higher tumor mutational burden observed in some younger patients. 

These findings highlight distinct mutational processes in some early-onset DCIS cases, though 
these molecular features do not explain the age-dependent RT response, suggesting separate 
biological mechanisms underlying treatment sensitivity in younger patients found in this study. 
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Fig. 1: Mutational Signatures in pure DCIS samples.  

Top panel shows tumor mutational burden (TMB) with distribution of point mutation types. 
Clinical annotations display RT-outcome status (radiotherapy and recurrence), tumor grade, 
molecular subtype, and patient age. The bottom heatmap depicts the relative contribution 
across samples of single base substitution (SBS) signatures detected in at least 10 samples 
(z-score normalized). 

 

Pure DCIS is associated with high frequency of mutations in genes involved cell adhesion, 
polarity, tissue structure and function 

Analysis of pure DCIS revealed distinct patterns of recurrent mutations across multiple genes 
(Fig. 2). PIK3CA was the most frequently mutated gene (15% of cases), followed by FSIP2 and 
KIR3DL3 (14%). We also identified functional gene groups among the most frequently mutated 
genes including several motor genes converting chemical energy to mechanical force 
(DNAH12, DNHD1, and MYOB15; 12% each), collagen genes (COL18A1 and COL4A3; 12% 
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and 10%, respectively), and mucin genes (MUC3A, MUC4, MUC22, and MUC5AC) also showed 
alterations (10-12% of cases each). While mucin genes are typically large and can accumulate 
mutations by chance, these specific mucin genes were not identified as FLAGS (FrequentLy 
mutAted GeneS) and therefore not excluded in our analysis (See Methods). Given our stringent 
rules for mutation calling, these findings suggest that mutations in mucin and other genes 
controlling epithelial-components including cellular morphology, epithelial function and 
adhesion are central to the physiopathology of pure DCIS.   

We also identified a few mutated genes enriched in distinct clinico-pathological groups 
including patients with early-onset DCIS (FILP1L, CFAP61, FREM1) or later-onset (ERBB4), 
high-grade lesions (TP53) and Her2-enriched subtype (ASH1L, NAGPA, DMD) (Figure 2B). 

Collectively, these findings highlight that pure DCIS harbors frequent mutations in genes 
governing tissue architecture and cell-cell interactions, suggesting these alterations may be 
fundamental to DCIS development. 
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Fig. 2: The most frequently mutated genes and association with clinico-pathological 
variables in pure DCIS patients.  
a The top 50 most frequent non-synonymous small variants identified in pure DCIS lesions. 
Samples are in columns and variants are color-coded based on their classification. The TMB 
for each lesion is displayed at the top of the heatmap. Samples are organized by age at 
diagnosis, with additional clinico-pathological features—grade and subtype—depicted at the 
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bottom. b Mutated genes significantly associated with specific clinico-pathological variables 
(False discovery rate [FDR] < 0.001). The barplots show the proportion of mutated samples 
within specific categories: age group (left), high grade (middle), and Her2-subtype (right). 
Proportions for each category are compared to the proportions of mutated samples in the 
other respective groups (shown in grey). 

 

Established cancer driver genes are present in pure DCIS but lack prognostic capacity 

Mutational analysis identified two significant driver genes in pure DCIS: PIK3CA and TP53 (FDR 
< 0.05). Both genes were also among the most frequently mutated genes (Fig. 2a, red-labelled 
genes). Out of 44 samples carrying a mutation in at least one of these driver genes, 26 
samples harbored at least one potentially actionable alteration as indicated by OncoKB 
(Supplementary Fig. 1).  

The mutation spectrum in PIK3CA was dominated by the activating H1047R hotspot mutation 
(>50%) in the kinase domain of exon 21, known to enhance PI3K-mitigated pathway signaling 
(Supplementary Fig. 1)27,28. Similarly, TP53 mutations (70%) clustered in known hotspots within 
the DNA-binding domain, resulting in the loss of tumor suppression by affecting its ability to 
bind to DNA (Supplementary Fig. 1).  

Despite their established roles in cancer progression, none of these driver mutations 
correlated with increased 10-year local recurrence risk, suggesting that additional factors 
influence DCIS progression. 

 

Identification of mutations associated with increased local recurrence risk independent of 
treatment 

To identify potential prognostic markers, we analyzed mutated genes associated with the risk 
of invasive or in-situ local recurrence in the ipsilateral breast occurring between 6 months and 
10 years after diagnosis. Our survival analysis identified twelve potential prognostic 
biomarkers significantly associated with increased 10-year local recurrence risk in DCIS 
(Firth-corrected cox p-value <0.01; Fig. 3a-b). These mutations, occurring in 7-10% of cases, 
were largely mutually exclusive across molecular subtypes and grades.  

The presence of mutations in at least one of these genes was significantly associated with 
increased recurrence risk (Fig. 3c, log-rank p-value p<0.0001), with MYO7A and PDZD8 showing 
the strongest associations (HR>8.0, Fig. 3b). The genes represent diverse cellular functions, 
clustering in three major functional groups: cytoskeleton and vesicle dynamics (MYO7A, 
STON1, PDZD8), signal transduction and receptor activity (NPFFR1, DERL3 and STON1), and 
DNA and RNA regulation (HIVEP3, STOX1, DNASE2B) (Fig. 3c).  

These findings highlight the importance of cytoskeletal reorganization and vesicle dynamics in 
DCIS prognosis, processes critical for cell motility, enzyme secretion, cytokine production, and 
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adhesion molecule presentation. Additionally, the identified mutations suggest roles for 
pathways that may enhance cell proliferation and survival in pure DCIS. 

 

Fig. 3: Gene variants associated with an increased 10-year local recurrence risk in DCIS.  
a Samples are in columns and variants are color-coded based on their classification. Local 
recurrence status and clinico-pathological characteristics of each lesion are depicted at the 
bottom. Local recurrence is defined as any recurrence, in situ or invasive, in the ipsilateral 
breast occurring between 6 months and 10 years after diagnosis. Right-hand side reports the 
proportion of each variant classification type. b Hazard ratio and confidence intervals for each 
significant mutated gene associated with increased 10-year local recurrence risk (Firth's 
penalized likelihood Cox regression). c Kaplan-Meier analysis of local recurrence-free survival 
(LRFS) comparing patients with mutations in at least one of the 12 genes (red) versus those 
without mutations (blue). d Cellular component Gene Ontology (GO) terms annotations for 
each significant gene. 
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Early-recurring DCIS harbors co-occurring mutations in cell adhesion and ECM-related genes 
that predict radiotherapy resistance 

To identify predictive biomarkers for radiotherapy response, we analyzed mutations associated 
with 10-year local recurrence as defined above but restricted specifically to patients who 
received RT. This analysis revealed 27 genes significantly associated with increased risk of 
recurrence risk despite RT radiotherapy (log-rank test p-value <0.05; Fig. 4a). Unlike the 
prognostic markers, mutations in these genes frequently co-occurred, with at least one 
mutation present in ~26% of lesions (19/73 patients). Kaplan-Meier analysis demonstrated 
that most recurrences in mutation-positive cases occurred within 1.5 years after radiotherapy 
(Fig. 4b). Firth's penalized likelihood Cox regression revealed a significant increase in LR risk 
for lesions with mutations in at least one of these genes in patients treated with RT (HR = 
50.96, 95% CI: 6.01-6649.92, p < = 3.24e-05), but not in patients who did not receive RT (p = 
0.1). This indicates that the presence of these mutations is specifically associated with an 
increased risk of recurrence following RT. 

Given the frequent co-occurrence of mutations in these genes, we investigated whether the 
increased recurrence risk might be related to overall TMB. Despite observing several high-TMB 
lesions clustering among patients with these mutations (Fig. 4c), TMB itself showed no 
significant association with LR risk. Indeed, many lesions with high mutational burden 
remained recurrence-free during the 10-year follow-up period, suggesting that specific 
mutations, rather than overall mutation load, drive early recurrence after RT. 

We further investigated whether clinico-pathological variables might confound the predictive 
power of these mutations. The effect of mutations remained significant after adjusting for age 
(HR = 46.95, 95% CI: 5.41-6161.54, p <0.0001). This result suggests that these mutations 
represent an independent risk factor for early recurrence following radiotherapy.  

Our findings reveal a critical connection between the cell leading edge, apical junction 
complex, contractile actin filament bundle, ruffle, and clathrin-coated vesicles, highlighting a 
network of genes that regulate cytoskeletal dynamics, cell morphology and vesicular 
trafficking (Fig. 4d). Key players in this pathway include SORBS1 (stress fiber formation and 
actin remodeling at the leading edge), KRT1 (structural anchoring for actin filaments), STON1 
(vesicle trafficking and clathrin-coated pit formation), WWC1 (actomyosin tension regulation 
and apical junction assembly), PATJ (apical-basal polarity and actomyosin interaction), and 
RELN (actin filament bundling and ruffle formation). These genes mediate processes essential 
for epithelial cell adhesion, cytoskeletal remodeling, and vesicular transport in healthy 
epithelial cells, and mutated forms of these genes play roles in invasion by modifying cell-cell 
adhesion, migration and epithelial-mesenchymal transition (EMT). 

Additionally, we identified a distinct pathway hub associated with fibrillar collagen trimer and 
banded collagen fibril, where COL5A3 plays a pivotal role in extracellular matrix (ECM) 
organization and structural support. Other pathway components include ABCA2 (lipid 
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dynamics and ATPase-dependent transport), SZT2 (GATOR2 and Seh1-associated complex in 
mTOR regulation), and CEP12B (cytoskeletal anchoring via centriolar subdistal appendage).  

These findings highlight a multifaceted network that integrates cytoskeletal integrity, cell 
polarity, and vesicular dynamics with extracellular matrix (ECM) remodeling - these are all 
processes that may play a critical role in disease relapse after RT. The lack of prognostic value 
for recurrence in patients treated with BCS alone and not receiving RT underscores that these 
genes may specifically mediate resistance mechanisms that are activated in response to the 
oxidative stress, DNA damage, or microenvironmental changes induced by RT. 

 

 

Fig. 4: Mutations associated with radiotherapy resistance in DCIS.  
a An oncoplot showing the distribution of mutations in 13 genes significantly associated with 
local recurrence in radiotherapy-treated patients. Color-coding indicates mutation types; 
clinical annotations show age, grade, molecular subtype, and recurrence status. b 
Kaplan-Meier analysis of LRFS comparing patients with mutations in at least one of the 13 
genes (red) versus those without mutations (blue). c Distribution of TMB, shown as number of 
non-synonymous variants, log2 scale) for lesions with at least one mutation in genes 
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associated with LRFS colored by recurrence status at 10 years. d GO cellular component 
enrichment network analysis of recurrence-associated genes in radiotherapy-treated DCIS. 
Network visualization shows enriched GO terms (FDR < 0.2) from genes linked to local 
recurrence following radiotherapy. Nodes represent individual GO terms with size proportional 
to gene count, and edges indicate significant semantic similarity between terms. Node color 
intensity corresponds to enrichment significance. 

 

Copy number alterations display molecular subtype-specific patterns with select genomic 
regions linked to local recurrence 

Analysis of copy number alterations (CNAs) revealed recurrent chromosomal changes similar 
to those reported in invasive breast cancer (Fig. 5a). Significant gains were identified on 
chromosomal arms 1q, 8q, 16p, 17q, 20p, and 20q, while losses predominantly occurred on 8p, 
9p, 11q, 13q, 14q, 16q, and 17p (binomial test, FDR < 0.05). 

Global CNA burden varied considerably across samples, with approximately half showing 
minimal alterations (global CNA score < -0.58; Fig. 5b). Basal-like tumors exhibited greater 
CNA burden, while normal-like tumors showed fewer alterations (Fig. 5b, Supplementary Fig. 
2a). Similarly, high-grade lesions showed a greater CNA burden compared to low-grade lesions 
(Supplementary Fig. 2b).  

We identified distinct CNA patterns across molecular subtypes: basal-like tumors showed 
enrichment for gains on 8q, 13q, and 19q; LumA tumors frequently exhibited 16q loss; and 
Her2-enriched tumors showed characteristic 17q12 gains corresponding to the ERBB2 locus 
(Fisher's exact test, p < 0.005; Supplementary Fig. 2c). 

Six specific CNA regions were associated with increased 10-year local recurrence risk after 
adjustment for grade (Firth's penalized likelihood Cox regression p-value < 0.05; Fig. 5c). It 
includes 17q11 gain enriched in Her2-enriched cases. In contrast, recurrence-associated 
losses at 15q14 and gains at 11q11-12 (olfactory genes cluster), 5p14 (containing 37 genes 
including 4  cadherin genes) and 18p11, were observed across different grades and molecular 
subtypes. These alterations were largely mutually exclusive, except for adjacent cytobands for 
chromosome 11 gains. 
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Fig. 5: Frequent copy number alterations in pure DCIS and associations with 10-year LR risk  
a Genome-wide frequency of absolute copy number gains and losses across chromosomes 
1-22 (1Mb window). The estimated ploidy for each sample is subtracted from the copy number 
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values of each segment which means that a copy number of 0 is copy number change. The 
y-axis shows the percentage of samples with each alteration type. Asterisks indicate statistical 
significance for chromosomal arm alterations b Heatmap showing copy number profiles per 
cytoband across samples (rows), ordered by global CNA score (GCS). Sample annotations 
include age, grade, molecular subtype and local recurrence status at 10 years. c Heatmap of 
six genomic regions significantly associated with 10-year risk of local recurrence 
(Firth-corrected cox model p-value < 0.05 adjusted for grade), showing copy number status. 
Regions present in at least 5 patients are shown, with copy number gains in red and losses in 
blue. Samples and regions were clustered using Ward's hierarchical clustering with Minkowski 
distance metric. 

 

Contextualizing our genomic findings with prior profiling studies: consistent early mutational 
drivers, novel subtype-specific CNA patterns, and predictors of RT response 

Most prior DCIS genomic studies analyzed small cohorts (<100 cases) and primarily focused 
on DCIS cases with concurrent invasive disease (synchronous DCIS) rather than pure DCIS 
(Supplementary Table 1). While recent larger studies, such as those by Strand et al. (2022)21 
and Kader et al. (2024)29, examined hundreds of pure DCIS cases, their reliance on low-pass 
sequencing or lack of matched normal tissues limits the sensitivity for detecting genomic 
changes, particularly when working with FFPE samples, which are often the only available 
option for DCIS studies.  

Across studies, PIK3CA and TP53 consistently emerged as the most frequently mutated genes, 
with mutation rates ranging from 21–55% and 17–52%, respectively (Supplementary Table 1). 
In our cohort, PIK3CA and TP53 were also among the most frequently mutated genes and 
identified as tumorigenesis drivers in pure DCIS. Mutations in GATA3 and PTEN, which were 
frequently reported in several studies14,15,30 , were only detected in a small number of lesions in 
our cohort (n = 3 for each). Differences across studies likely reflect variations in methodology, 
including variant-calling pipelines, sample types (e.g., synchronous vs. pure DCIS), cohort 
composition (e.g., histological grade and ER/HER2 status), and our study’s specific focus on 
local recurrence and radiotherapy response, complicating direct comparisons. Nevertheless, 
the consistent identification of PIK3CA and TP53 as the most frequently mutated genes across 
studies and in our cohort reinforces their pivotal roles in the early stages of breast 
tumorigenesis.  

Recurrent CNAs in regions such as 1q, 8q, and 17q gains, as well as 8p, 11q, and 16q losses, 
were observed in our study, consistent with prior DCIS findings, including those from Strand et 
al. (2022)21 and Abba et al. (2015)16. For example, Strand et al. (2022) identified 29 recurrent 
CNAs in DCIS but found no single CNA predictive of recurrence21. In contrast, we identified six 
genomic regions significantly associated with 10-year local recurrence risk, including regions 
linked to clinicopathological features associated with poor prognosis, such as 5p14 in 
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high-grade tumors7,31 and 17q11-12 in Her2-enriched cases32,33, as well as novel losses at 
15q14 and gains at 11q11-12, 5p14 and 18p11 found across grades and subtypes. These 
differences may reflect the higher resolution of our sequencing approach (100x whole-exome 
sequencing) compared to the low-pass sequencing used in prior studies. Notably, our study 
provides valuable new insights into molecular subtype-specific CNA patterns in DCIS. In our 
cohort, basal-like tumors exhibited gains on 8q, 13q, and 19q; Luminal A tumors displayed 16q 
loss; and Her2-enriched tumors showed 17q12 gains encompassing ERBB2. Aside from 
amplifications in HER2-positive subtypes, subtype-specific CNA analyses remain poorly 
represented in the DCIS literature but are well established in invasive breast cancer (see 
supplementary text). These findings suggest that genetic and molecular aberrations defining 
subtypes likely arise early and are at least partially established at the DCIS stage. 

Finally, while several studies have explored prognostic markers of recurrence, few account for 
treatment variation, and none specifically examined markers of RT response (Supplementary 
Table 1). Our study uniquely identified genetic alterations within a gene network that integrates 
cytoskeletal integrity, cell polarity, vesicular dynamics, and ECM remodeling, which are 
associated with an increased risk of local recurrence within three years following RT. This 
raises the possibility that impaired tissue integrity responses contribute to resistance 
mechanisms activated by RT-induced stress, leading to adverse effects in these lesions. 

 

Discussion  

Our study provides a comprehensive analysis of pure DCIS, focusing on DNA profiles that may 
influence disease progression and response to RT. While previous research has primarily 
examined genomic changes in synchronous DCIS compared to IDC or pure DCIS, our work 
offers a detailed view of the mutational landscape specific to pure DCIS. Importantly, we 
identified genomic alterations associated with molecular subtypes and, most critically, early 
local recurrence—both independent of treatment and specifically in cases following 
radiotherapy—highlighting potential molecular drivers of treatment outcomes. Our findings 
also revealed distinct mutational processes in early-onset DCIS with high tumor mutational 
burden potentially driven by impaired mismatch repair, but these were not associated with 
prognosis. 

While driver genes like TP53 and PIK3CA are critical in the early stages of tumorigenesis, our 
study found no significant associations between their presence and disease progression or 
response to treatment. The presence of these mutations highlights their importance in 
overcoming initial biological constraints; however, once these initial challenges are surpassed, 
other genetic alterations or microenvironmental factors likely become the driving forces of 
invasive progression. This is supported by the observation that these mutations are often 
retained in invasive carcinoma, but may occur at lower prevalence than in hyperplastic and in 
situ breast lesions34. Furthermore, studies have observed different prognostic relevance 
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depending on tumor clinicopathological characteristics. For instance, Lin et al.12 observed an 
inverse association between PIK3CA kinase domain mutations in high-grade DCIS tumors and 
progression, while Silwal-Pandit et al.35  reported that the prognostic impact of TP53 mutations 
varied across molecular subtypes of invasive breast cancer. These findings suggest that TP53 
and PIK3CA mutations represent early events in the process of breast epithelial proliferation 
and tumorigenesis. Their biological roles, however, likely depend on the broader molecular 
landscape of the tumor, and they are insufficient as standalone drivers of progression to 
invasive disease. This underscores the complexity of breast cancer evolution, where early 
driver mutations interact with additional molecular and microenvironmental factors to shape 
disease trajectory. 

Our study identified novel associations between mutations in genes regulating cell adhesion, 
signaling pathways, and ECM remodeling with an increased risk of invasive or in situ LR in pure 
DCIS. Specifically, twelve mutated genes were significantly associated with LR across the 
entire cohort. The genes represent diverse cellular functions, clustering in three major 
functional groups: cytoskeleton and vesicle dynamics (MYO7A, STON1, PDZD8), signal 
transduction and receptor activity (NPFFR1, DERL3 and STON1), and DNA and RNA regulation 
(HIVEP3, STOX1, DNASE2B). These mutations were mutually exclusive, meaning they rarely 
co-occurred in the same patient, and each demonstrated independent prognostic value in 
univariate analyses. This pattern suggests that alterations in any one of these genes may 
independently contribute to recurrence risk, likely through distinct molecular mechanisms. 
Mutations in these genes may compromise tissue homeostasis, disrupt epithelial architecture, 
and facilitate conditions that promote tumor cell escape and recurrence.  

When we stratified the cohort based on administration of RT, unique genes at the exception of 
STON1 and NPFFR1 were found to be significantly associated with increased risk of LR within 
the RT treated group.  Notably, mutations in SORBS1, KRT1, STON1, WWC1, PATJ and RELN, 
playing a key role in actin dynamics, structural integrity, vesicle trafficking, apical-basal polarity, 
and cell junction organization, were identified. Mutations in COL5A3 were also associated with 
increased risk of LR in RT-treated patients.  COL5A3 regulates the mechanical properties of the 
ECM, and mutations could further affect the tumor structural support and microenvironment 
changes in response to RT36. These findings build on prior studies linking disruptions in tissue 
structure and ECM remodeling to DCIS progression11,16,17,19, while providing novel insights into 
their specific role in recurrence following RT in pure DCIS. The co-occurrence of these 
mutations underscores the critical importance of cytoskeletal integrity, polarity maintenance, 
and ECM interactions to prevent cell detachment and migration under RT-induced stress. 
Future studies are warranted to investigate how these mutations interact with other molecular 
pathways and microenvironmental factors to further elucidate their contribution to the adverse 
effects of RT and to identify potential strategies for mitigating recurrence risk37–39. 

Finally, we identified gains and losses that have been frequently reported in literature, namely 
gains on 8q11–13,15,16,29,30, 17q11,13,16,19–21,29,30, 20q29,30, and losses on 11q11,11–13,19,20,29, 16q11,14,15,21,30. 
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Interestingly, these alterations reflect patterns similar to those observed in IDC, suggesting that 
pure DCIS already possess CNA characteristic of invasive cancer including CNAs defining 
molecular subtypes such as basal, luminal-A or Her2-enriched tumors. While some CNAs 
associated with LR likely reflect clinical or molecular subtypes with worse prognosis (5p12-15 
in high grade and chr 17q12 in Her2-enriched), we also identified aberrations associated with 
LR independent of clinico-pathological tumor features such as gains at 11q11-12 containing 
olfactory genes cluster and 5p14 containing 37 genes including four cadherin genes (CDH10, 
CDH9, CDH12, CDH18). Future studies may benefit from focusing on risk stratification methods 
that go beyond traditional subtype classifications. Furthermore, the presence of LR-associated 
CNAs at regions linked to cell-cell adhesion, such as gains on 5p14, again indicate the 
importance of maintaining tissue integrity and cell signaling to prevent local recurrence.  

Overall our findings uncover the genomic landscape of pure DCIS and highlight the potential 
factors that contribute to local recurrence and their role in mediating adverse effects of RT. 

 

Methods 

The Ontario DCIS cohort 

The Ontario DCIS Cohort was established at the Sunnybrook Health Sciences Center (Toronto, 
Canada) as a population-based sample of women diagnosed with pure DCIS defined as in situ 
cancer without any invasive component between 1994 and 200340–42. All patients underwent 
breast-conserving surgery (BCS), with a subset receiving subsequent RT. Adjuvant endocrine 
therapy was administered to less than 15% of individuals, while none received systemic 
chemotherapy or neoadjuvant endocrine therapy. The cohort features comprehensive 
annotation of clinical annotation and expert pathology review. Previous studies of this cohort 
have characterized outcomes based on clinical factors including age at diagnosis, pathological 
features (tumor size and nuclear grade), and treatment modalities43–46. 

Sample selection was prioritized to achieve balanced representation between RT-treated and 
untreated patients, as well as between patients who experienced invasive or in-situ ipsilateral 
local recurrence (LR) within ten years post-treatment and those who did not. Tissue cores were 
obtained from FFPE blocks, sampling DCIS tumors without microinvasion alongside adjacent 
normal and stromal tissues. DNA and RNA were extracted using the Qiagen AllPrep FFPE 
DNA/RNA kit (Qiagen). Samples yielding sufficient DNA quantities underwent library 
construction using the Nextera Flex RNA Exome kit (lllumina) and were sequenced on the 
NovaSeq6000 platform (100bp paired-end, 100M reads/sample) at the Genome Quebec 
Innovation Centre (Montreal, Canada). While high-quality sequencing data was obtained for 
300 tumor tissues, downstream analyses focused on 147 samples with matched normal 
profiles (144 normal tissue and 3 stroma non-epithelial samples). 
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Molecular subtypes were determined using RNA profiles available for a subset of patients (n = 
122). PAM50 subtype classification was performed using the genefu R package with 
established centroids. Specifically, normalized expression data of the 50 PAM50 genes were 
obtained using variance stabilizing transformation implemented in the DESeq2 R package47 
and compared to subtype-specific centroids using Pearson correlations. Each sample was 
assigned to the molecular subtype with which it showed the highest correlation coefficient. 

 

Whole-exome sequencing data preprocessing  

Raw reads were processed using Trimmomatic48 (version 0.39) to remove adaptor sequences 
and low quality bases. Reads were trimmed to retain high-quality sequences, applying quality 
thresholds of 10 at read ends and 20 within a 4-base sliding window. The remaining paired 
reads were processed following the GATK4 best practices. Briefly, reads were aligned to the 
human reference genome (GRCh38, GATK resource bundle) using the Burrows-Wheeler Aligner 
(BWA)49. Post-alignment procedures included sorting, annotating reads with read groups, and 
marking duplicate reads with Picard. Base quality score recalibration was conducted using 
GATK4 tools. A recalibration table was generated with the BaseRecalibrator function using 
known variant sites (dbSNP138 for SNPs and Mills and 1000 Genomes for indels), and 
recalibration was applied with ApplyBQSR to adjust base quality scores and correct for 
systematic technical errors. The process focused on SureSelect Human Exons v7 regions with 
a 100 bp padding.  Finally, properly paired reads were extracted, excluding secondary 
alignments and low-quality reads, with the resulting files indexed using Samtools50. 

 

Single nucleotide variant & indel calling 

For variant calling, we used NeuSomatic51, a deep learning approach that leverages both tumor 
and matched normal sequence alignment information, alongside somatic mutation calls from 
six different approaches: MuTect2, MuSE, VarDict, VarScan2, Strelka2, and SomaticSniper52–57. 
This method was selected because of the low level of agreement between callers in our data - 
the majority of mutations (88.7%) were identified by only one caller (Supplementary Fig. 3A) - 
an observation  consistent with previous studies58–60. The number of mutations detected varied 
significantly across samples, with the minimum identified in any single sample being 1,563 
mutations, and the maximum reaching 283,247 mutations (Supplementary Fig. 3A).  

We used the ensemble extension of NeuSomatic which includes 93 channels to capture 
features extracted from the six individual methods and 26 additional channels to capture the 
alignment information in a window of seven bases around the candidate mutation. This results 
in 119 input channels for each candidate matrix. We used the recommended pre-trained model 
SEQC-II (SEQC-WGS-Spike model) (trained on 20 whole-genome sequencing replicate pairs 
with in silico somatic mutations of 1%-100% AF, matched with both 95%N and 100%N, 
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~40x-220x, 5 callers used: MuTect2, Strelka2, MuSE, SomaticSniper, VarDict). After mutation 
calling, the recommended post-processing was applied to resolve long INDEL sequences. The 
final NeuSomatic predictions were used for downstream analyses. 

We obtained comprehensive genomic information for each variant using the Ensembl Variant 
Effect Predictor (VEP).61 This included the effects on gene and protein function, such as 
consequence types and amino acid changes, variant frequencies in different populations, 
impact on regulatory regions, and potential associations with diseases and phenotypes. 
Following annotation with the Ensembl VEP, we used the vcf2maf tool to transform 
VEP-annotated VCF files into the Mutation Annotation Format (MAF). This conversion ensures 
each variant is uniquely associated with a single gene transcript or isoform, despite the 
potential for a variant to impact multiple isoforms. Particularly in cases where variants could 
be classified under different effects — such as a Missense_Mutation near a Splice_Site 
— the MAF format forces a singular designation for each variant by leveraging VEP's 
determinations for canonical isoforms.  

We excluded 100 genes commonly mutated in public exome datasets (FLAGS) due to their 
lower likelihood of disease association62. This decision stems from their longer coding regions, 
which inherently increase mutation probability, and the presence of paralogs that might offset 
functional loss these mutations could cause62,63.  

High-confidence variants (identified with a probability score of 0.7 or higher) consistently 
showed higher allele frequencies compared to those categorized as low-quality (with scores 
between 0.4 and 0.7) and rejected variants (with scores below 0.4) (Supplementary Fig. 3B). 
To reduce potential false positives, we selected high-confidence variants with allele frequency 
above 0.1.  

Mutation patterns and frequencies were visualized using the oncoplot function from the 
maftools R package64, which displays mutation types and frequencies across samples. 

 

Mutational signatures 

We performed mutational signature analysis using the COSMIC database of single-base 
substitution (SBS) signatures25. First, the trinucleotide context of each single nucleotide variant 
was characterized. We then used the fit_to_signature function in the  
MutationalPatterns R package (version 3.19)  to find the linear combination of COSMIC 
mutation signatures that most closely reconstructs the mutation spectra for each sample by 
solving the nonnegative least-squares constraints problem. We used strict refit where the 
signature with the lowest contribution is removed; refitting is repeated until  the cosine 
similarity between the original and reconstructed profile becomes more than max_delta= 
0.004). We selected signatures that contributed to the mutation spectrum of at least 10 
samples and plotted their relative contributions using the pheatmap R package. 
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Driver genes 

To identify driver genes (i.e., genes under positive selection in cancer), we used the dNdScv 
analysis method65. This approach is based on the evaluation of the ratio between synonymous 
(silent) mutations and non-synonymous (missense) mutations in genes. A higher ratio of 
non-synonymous to synonymous mutations in a gene indicates positive selection for 
mutations that may confer a growth advantage to cancer cells, suggesting the potential role of 
the gene as a driver in tumorigenesis. 

The dNdScv method estimates the background mutation rate of each gene by combining local 
information (synonymous mutations within the gene) with global information (variation of 
mutation rates across genes). This approach controls for the sequence composition of genes 
and accounts for mutational signatures, providing a more accurate estimation of the expected 
neutral mutation rate. In particular, the dNdScv R package implementation uses trinucleotide 
context-dependent substitution matrices to mitigate common mutation biases that can affect 
dN/dS calculations65.  

To visualize and analyze the distribution and nature of mutations in driver genes,  we used 
lollipop plots generated from the cBioPortal MutationMapper tool. These plots provide a 
comprehensive representation of mutation types and their locations along the protein 
sequence as well as annotations of predicted functional impact for each mutation from 
Mutation Assessor (http://mutationassessor.org/, accessed on August 2024), SIFT66, and 
PolyPhen-267. To further characterize the identified mutations, we conducted additional 
investigations incorporating several layers of annotation including likely mutation hotspots as 
identified by Memorial Sloan Kettering Cancer Hotspots and 3D Hotspots databases68, and 
annotation records of therapeutic indication from  OncoKB69, CIVIC70, and My Cancer Genome 
(https://www.mycancergenome.org/, accessed on August 2024). 

 

Copy Number Alterations (CNAs) 

To investigate copy number alterations, we applied the Allele-Specific Copy Number Analysis 
of Tumours (ASCAT v3) on our tumor normal pairs estimating tumor purity, ploidy, and 
allele-specific copy number71. The runAscat function was executed with default settings 
optimized for high-throughput exome sequencing data, with the gamma parameter set to 1.  
After examination of ASCAT sunrise plots, we identified a subset of samples (n=35 samples), 
for which the initial estimates of tumor purity and ploidy did not align with the regions of 
highest confidence on the sunrise plots. The runAscat was re-run for these samples by 
manually assigning the aberrant cell fraction (tumor purity) and tumor ploidy parameters 
corresponding to the regions of highest probability as depicted on the sunrise plots. Overall, 
eight samples were excluded from further analysis due to poor goodness of fit leaving 139 
samples with CNA profiles for downstream analyses. Absolute number gains and losses 
shared across samples were visualized across whole chromosomal regions using 
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aCNViewer73 (window size of 1 Mbp). The estimated ploidy for each sample is subtracted 
from the copy number values of each segment which means that a copy number of 0 is copy 
number change. These adjusted windows at base resolution are then plotted into a stacked 
histogram representing genome-wide absolute copy number and copy neutral variations over 
all samples in a group. 

We applied a re-segmentation approach to adjust for amplitude divergence due to technical 
variability implemented in CNApp72 using the default settings (minimum segment length = 100 
Kbp, minimum amplitude deviation from segment to zero = 0.16, maximum distance between 
segments=1 Mb, maximum amplitude deviation between segments = 0.16, and maximum BAF 
deviation between segments = 0.1). Re-segmented data were then used to calculate the broad, 
focal and global CNA scores. We then transformed re-segmented data into genomic regions 
profiles (chromosome arms, cytobands and sub-cytobands) using both focal and broad 
segments. Length-relative means are computed for each window by considering amplitude 
values from those segments included in each specific window. Default cutoffs for low-level 
copy number gains and losses (i.e., |0.2|) were used to infer CNA frequencies.  

 

Survival analyses 

We evaluated the association between gene mutations or copy number aberrations in 
cytobands and 10-year local recurrence-free survival using Firth's penalized likelihood Cox 
regression which accounts for small sample sizes and rare events. This analysis was 
conducted using the coxphf R package. Aberrations were included in the analysis only if 
detected in at least five lesions. This analysis was performed across the entire patient cohort. 
To further investigate genetic alterations associated with response to RT, a stratified analysis 
was conducted based on treatment groups.  

Kaplan-Meier survival curves were used to visualize the results, illustrating event-free survival 
probabilities over time for patients stratified by mutational status in the specified genes or 
gene sets. 

GO enrichment analyses were performed using the clusterProfiler R package. Entrez gene 
identifiers were mapped to GO terms using the org.Hs.eg.db annotation database. All GO 
terms with FDR < 0.2 were considered. Semantic similarity between GO terms was calculated 
using the Wang method implemented in the pairwise_termsim function. The enrichment 
map was visualized using the emapplot function which displays the significantly enriched 
terms. 
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Third-party studies 

A systematic literature search was performed using PubMed to identify previous studies that 
conducted DNA profiling on pure DCIS or DCIS mixed with invasive lesions. The search 
strategy included terms related to “ductal carcinoma in situ”, “genetic markers”, “DCIS 
prognosis”, “DCIS progression”, “DCIS to IDC”, "dcis dna", "dcis prognosis dna markers", "copy 
number alterations", and “somatic mutations”. Studies were included if they reported genomic 
analyses of DCIS samples using sequencing or copy number profiling techniques and were 
published within the last 10 years. Twelve studies met the inclusion criteria, and their key 
findings were summarized in Supplementary Table 1. The review emphasized genetic 
alterations and pathway dysregulation that may drive DCIS initiation and progression to 
invasive disease. 

Data availability 

Owing to the personal, sensitive and inherently identifying nature of raw genomic data, access 
to raw data and patient metadata is controlled and requires institutional material data transfer 
agreements (contact person: eileen.rakovitch@sunnybrook.ca). 

 

Code availability 

Scripts to reproduce the analyzes performed in this study can be found at 
https://github.com/dumeaux-lab/dcis-dna_paper. 
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