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Abstract 

Background Managing Ductal Carcinoma in Situ (DCIS) remains challenging due to the lack of reliable biomark-
ers to predict radiotherapy (RT) response, leading to both overtreatment of indolent disease and undertreatment 
of aggressive cases.

Results Through whole-exome sequencing of 147 DCIS cases, we characterized the genomic landscape of pure 
DCIS and identified genetic alterations associated with the risk of recurrence, either in-situ or invasive. DCIS lesions 
harbored frequent mutations in established cancer drivers (PIK3CA, TP53) and genes regulating tissue architecture, 
which likely enhanced pre-invasive cell fitness but lacked prognostic value. A subset of younger patients exhibited 
distinct mutational processes characterized by high mutational burden, though these were not linked to recurrence 
risk. Across the cohort, five mostly mutually exclusive genes (SH2B2, PDZD8, MYO7A, MUCL3, DNASE2B), involved in cell 
adhesion, membrane organization, and DNA degradation, were significantly associated with 10-year risk of local 
recurrence. In RT-treated patients, we identified 27 additional mutated genes uniquely associated with recurrence, 
along with SH2B2 and MUCL3. Most of these genes were involved in cytoskeletal regulation, cell adhesion, and cell-
environment interactions. Mutations in metabolic regulators (MGAM2 and AADACL3) and REV1, which mediates DNA 
damage tolerance, may impair cellular responses to RT-induced stress. Notably, we identified distinct genes prog-
nostic for in-situ versus invasive recurrence: nineteen genes predominantly involved in tissue structural maintenance 
in in-situ relapse, and thirteen genes primarily affecting cell-cycle and genome-stability pathways in invasive pro-
gression. Copy number analyses revealed that pure DCIS exhibits molecular subtype-specific patterns characteristic 
of invasive disease, with novel alterations associated with recurrence, including three non-adjacent gains and five 
losses in regions harboring oncogenes, tumor suppressor genes, and genes regulating structural integrity, cell-cell 
adhesion and interactions.

Conclusions While TP53, PIK3CA, and recurrent copy number alterations represent early events in tumorigenesis, they 
lack prognostic value in pure DCIS, underscoring the need for alternative biomarkers. Our findings identify key genetic 
alterations associated with local recurrence and RT resistance. We further uncovered distinct molecular programs 
underlying in-situ versus invasive recurrence, with mutations affecting tissue structural maintenance in in-situ relapse 
and cell-cycle/genome-stability pathways in invasive progression.
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Introduction
Ductal Carcinoma in Situ (DCIS) is a non-invasive, non-
obligate precursor of invasive breast cancer characterized 
by clonal proliferation of neoplastic cells confined within 
the breast ducts [1]. DCIS is primarily detected through 
screening and diagnostic mammograms due to its char-
acteristic presentation with microcalcifications. The 
widespread implementation of mammographic screen-
ing programs has led to a substantial increase in DCIS 
detection, with incidence rates rising from four to eleven 
cases per 100,000 women between 1993 and 2007 [2, 3]. 
This trend is expected to continue as screening programs 
expand to include younger women [4].

There are currently no definitive markers to predict 
which cases will progress to invasive, life-threatening 
lesions [5, 6]. Consequently, treatment, usually involv-
ing breast-conserving surgery (BCS) followed by breast 
radiation therapy (RT), is recommended for all women 
diagnosed with DCIS [5]. However, many DCIS would 
not transit to invasive life-threatening disease even if 
left untreated [7]. The absence of known markers pre-
dictive of a patient benefit to RT results in both over-
treatment for indolent lesions and under-treatment for 
some aggressive DCIS likely to evolve to an invasive state. 
Markers that identify such cases could enable tailored 
treatments, such as full mastectomy or adjuvant systemic 
therapies for patients at risk of in  situ or invasive local 
recurrence (LR) despite receiving RT [8], or more fre-
quent watch-and-wait strategies for those with indolent 
lesions.

Cancer emerges from the accumulation of genetic 
aberrations in neoplastic cells and genomic instability [9]. 
Mutations can disrupt normal cellular processes, leading 
to uncontrolled cell growth, impaired DNA repair, and 
other aberrant cellular behaviours that may contribute to 
cancer development [9]. Previous studies have revealed 
important insights into DCIS progression by highlight-
ing specific mutations and chromosomal alterations that 
may influence the progression towards invasive disease 
[10–17]. Many of these studies, however, focus on syn-
chronous DCIS – concurrent presentation of DCIS and 
invasive ductal carcinoma (IDC). These studies explore 
the overlap between DCIS and IDC, and recognize the 
potential differences between them. However, these find-
ings might be reflective of a timepoint beyond the evolu-
tionary bottleneck.

TP53 and PIK3CA  are among the most frequently 
observed mutations in these studies [11–17] and are 
often characterized as key drivers of tumorigenesis, 
promoting growth and spread of cancer cells. How-
ever, this may not necessarily be the case, as mutant 
field clonalization could equip pre-malignant cells 
with additional (epi-) genetic mutations that confer 

fitness advantages, allowing them to expand into ductal 
regions without directly driving invasive behavior [10]. 
This suggests that driver mutations, alongside fre-
quently mutated genes, may serve as these early fitness 
enhancers rather than drivers of progression. Several 
copy number aberrations (CNAs) have also been identi-
fied by these studies [10–15, 17–20] including frequent 
gains at 1q, 8q, 11q, and 17q, and losses at 16q, however 
the specific associations of these CNAs to DCIS prog-
nosis remain unclear.

To address these critical gaps, we conducted compre-
hensive exome sequencing analysis of 147 pure DCIS 
cases, including patients treated with and without RT, to 
investigate markers of local recurrence within 10 years of 
diagnosis. Our study characterizes the mutational land-
scape in pure DCIS and identifies novel genomic altera-
tions associated with tumor grade, molecular subtypes, 
and patient age. Most importantly, we discovered specific 
variants and CNAs predictive of local recurrence risk, 
including genetic markers associated with RT response. 
These findings provide insights into the genomic deter-
minants of DCIS prognosis and treatment response, 
establishing a foundation for improved risk stratification 
and personalized treatment strategies for DCIS patients.

Results
A unique cohort of pure DCIS patients
We assembled a cohort of 147 pure DCIS patients treated 
with BCS, with or without subsequent RT, incorporating 
comprehensive genomic profiling through whole-exome 
DNA analysis of primary DCIS tumors and matched nor-
mal tissues (Table  1). The study design was balanced to 
include at least a third of patients who experienced an 
ipsilateral invasive or in-situ LR within a 10-year follow-
up period and about half received radiotherapy as part of 
their standard-of-care (Table 1). In clinical settings, RT is 
omitted in some patients with low-risk features of DCIS 
or due to patient preference. The median time to recur-
rence was 4.2 years for invasive disease and 2.1 years for 
in-situ disease. Most tumors were of intermediate to high 
grade spanning all five molecular subtypes, with normal-
like and luminal A subtypes more frequently observed in 
patients without LR within 10 years (Table 1). A minor-
ity of tumors exhibited multifocality (24.5%) and positive 
margins (6.8%). Clinical characteristics were comparable 
between RT-treated and untreated patients across all var-
iables except age, with women aged 60 years or older less 
likely to receive RT (Supplementary Table 1).

Mutational landscape of DCIS reveals distinct processes 
driving high mutational burden in early‑onset cases
The mutational load of pure DCIS lesions varied con-
siderably, ranging from. 3 to 3,482 non-synonymous 
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variants per sample (median 75). The majority (74.2%) 
were missense mutations, constituting approximately 
52K unique variants identified in ~ 14K genes. Most of 
these genes were not frequently mutated, with only 2,030 
genes (14.5%) harboring non-synonymous aberrations in 
at least 5 patients.

As expected, most mutations are of C > T type (bar-
plot in Fig.  1), a common mutational pattern attributed 
to the spontaneous deamination of 5-methylcytosine, 
a process frequently observed in many cancer genomes 
[21, 22]. Spontaneous deamination can be exacerbated 
in formalin-fixed paraffin-embedded (FFPE) samples due 
to DNA damage [23]. FFPE-related mutational artefacts 
are known to resemble certain COSMIC signatures [24], 
such as SBS30 and SBS1 [25]. During library preparation, 
formalin-induced DNA lesions are chemically repaired 
with unrepaired profiles resembling SBS30 and repaired 
profiles resembling SBS1 [25]. While SBS30 was not 
identified in our dataset, SBS1 was detected in a large 
number of samples (Fig.  1). SBS1, commonly found in 

tumor genomes, is difficult to distinguish from repaired 
FFPE-related artifacts due to their high similarity [22, 
25]. However, previous research has demonstrated that 
mutational profiles from repaired FFPE samples closely 
match true tumor mutational profiles [25], and we expect 
that our careful processing of mutation calling-pipeline 
minimizes the impact of these artefacts [23].

Interestingly, a subset of DCIS samples exhibit a sig-
nificantly higher tumor mutational burden (TMB), char-
acterized by an increase in frequency of C > G, T > C, 
and C > A mutations, and enrichment of specific SBS 
signatures including SBS26, SBS7b, and SBS5 (Fig. 1, 12 
samples on the right). The causes underlying these muta-
tional signatures remain incompletely understood. How-
ever, SBS26 has been linked to impaired mismatch repair 
and microsatellite instability. These cases were not more 
likely to have a recurrence, of a higher grade or of a spe-
cific molecular subtype but were predominantly found in 
younger patients (8 out of 12 under 50 years; Chi-square 
test p-value < 0.05).

Table 1 Patient and tumor clinical attributes

a Chi-square and t-test statistics for categorical and quantitative variables, respectively

Without Local Recurrence 
(n = 96)

With Local Recurrence (n 
= 51)

p‑valuea

Type of 10-year Local Recurrence DCIS 0 24 (47.0%)

Invasive 0 27 (53.0%)

Time to Recurrence in years
Median (Range)

DCIS NA 2.1 (0.5 – 9.7)

Invasive NA 4.2 (0.6 – 9.7)

Radiotherapy (RT)
N (%)

Yes 51 (53.1%) 22 (43.1%) 0.32

No 45 (46.9%) 29 (56.9%)

Clear Margins
N (%)

Positive 5 (5.2%) 5 (9.8%) 0.57

Negative 79 (82.3%) 40 (78.4%)

Undetermined 12 (12.5%) 6 (11.8%)

Tumor size (mm),
Median (Range)

16.3 (4.0 - 90.0) 21.3 (2.0 - 76.0) 0.05

Nuclear Grade
N (%)

Low 2 (2.1%) 2 (3.9%) 0.31

Moderate 61 (63.5%) 26 (51.0%)

High 33 (34.4%) 23 (45.1%)

Multifocality
N (%)

Present 19 (19.8%) 17 (33.3%) 0.14

Absent 48 (50.0%) 24 (47.1%)

Undetermined 29 (30.2%) 10 (19.6%)

Age
N (%)

<50 Years Old 37 (38.5%) 15 (29.4%) 0.11

50-60 Years Old 34 (35.4%) 14 (27.5%)

>60 Years Old 25 (26.1%) 22 (43.1%)

PAM50 Subtype (Pearson Correction)
N (%)

Basal-like 12 (12.5%) 9 (17.6%) 0.01

Her2-enriched 9 (9.4%) 9 (17.6%)

Luminal-A 27 (28.1%) 5 (9.8%)

Luminal-B 9 (9.4%) 12 (23.5%)

Normal-Like 20 (20.8%) 5 (9.8%)

Undetermined 19 (19.8%) 11 (21.6%)
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These findings highlight distinct mutational processes 
in some early-onset DCIS cases, though these molecular 
features were not associated with prognosis.

Pure DCIS is associated with high frequency of mutations 
in genes involved cell adhesion, polarity, tissue structure 
and function
Analysis of pure DCIS revealed distinct patterns of recur-
rent mutations across multiple genes (Fig.  2). PIK3CA 
was the most frequently mutated gene (15% of cases), 
followed by FSIP2 and KIR3DL3 (14%). We also identi-
fied functional gene groups among the most frequently 
mutated genes including several motor genes converting 
chemical energy to mechanical force (DNAH12, DNHD1, 

and MYOB15; 12% each), collagen genes (COL18A1 and 
COL4A3; 12% and 10%, respectively), and mucin genes 
(MUC3A, MUC4, MUC22, and MUC5AC) also showed 
alterations (10-12% of cases each). While mucin genes are 
typically large and can accumulate mutations by chance, 
these specific mucin genes were not identified as FLAGS 
(FrequentLy mutAted GeneS) and therefore not excluded 
in our analysis (See Methods). Given our stringent rules 
for mutation calling, these findings suggest that muta-
tions in mucin and other genes controlling epithelial-
components including cellular morphology, epithelial 
function and adhesion are central to the physiopathology 
of pure DCIS.

Fig. 1 Mutational signatures in pure DCIS samples. The top panel shows tumor mutational burden (TMB) with distribution of point mutation 
types. Clinical annotations display 10-year local recurrence outcome, tumor grade, molecular subtype, and patient age. The bottom heatmap 
depicts the row-scaled relative contribution of single base substitution (SBS) signatures detected in at least 10 samples (z-score). Samples (columns) 
and signatures (rows) are ordered based on a rank-sum statistic that maximizes the coherence of contribution patterns. The method first splits 
signatures into two groups using medoid clustering. For each signature, relative contributions are ranked within each group, and the final sample 
ordering is determined by the average rank-sum across all signatures
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Fig. 2 The most frequently mutated genes and association with clinico-pathological variables in pure DCIS patients. a The top 50 most frequent 
non-synonymous small variants identified in pure DCIS lesions. Samples are in columns and variants are color-coded based on their classification. 
The TMB for each lesion is displayed at the top of the heatmap. Samples are organized by age at diagnosis, with additional clinico-pathological 
features—grade and subtype—depicted at the bottom. b Mutated genes significantly associated with specific clinico-pathological variables (False 
discovery rate [FDR] < 0.001). The barplots show the proportion of mutated samples within specific categories: age group (left), high grade (middle), 
and Her2-subtype (right). Proportions for each category are compared to the proportions of mutated samples in the other respective groups 
(shown in grey)
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We also identified a few mutated genes enriched in dis-
tinct clinico-pathological groups including patients with 
early-onset DCIS (FILP1L, CFAP61, FREM1) or later-
onset (ERBB4), high-grade lesions (TP53) and Her2-
enriched subtype (ASH1L, NAGPA, DMD) (Fig. 2B).

Collectively, these findings highlight that pure DCIS 
harbors frequent mutations in genes governing tissue 
architecture and cell- cell interactions, suggesting these 
alterations may be fundamental to DCIS development.

Established cancer driver genes are present in pure DCIS 
but lack prognostic capacity
To identify potential cancer driver genes, we analyzed 
the ratio of non-synonymous to synonymous mutations 
(dN/dS) across all genes, which can indicate positive 
selection of mutations that provide growth advantages 
to cancer cells [26]. This analysis identified two signifi-
cantly mutated driver genes in pure DCIS: PIK3CA and 
TP53 (FDR < 0.05). Both genes were also among the most 
frequently mutated genes (Fig.  2a, red-labelled genes). 
While PIK3CA mutations were not enriched in specific 
molecular subtypes, TP53 mutations were significantly 
more frequent in basal-like and Her2-enriched subtypes 
compared to other subtypes (19% in basal-like [4/21], 
33% in Her2-enriched [6/18] vs 5% in other subtypes 
[4/78], Chi-square test p < 0.005).

Out of 34 samples carrying a mutation in at least one 
of these driver genes, 15 samples harbored at least one 
potentially actionable alteration as indicated by OncoKB 
(Supplementary Fig.  1). The mutation spectrum in 
PIK3CA was dominated by the activating H1047R hot-
spot mutation (~ 50%) in the kinase domain of exon 21, 
known to enhance PI3K-mitigated pathway signaling 
(Supplementary Fig.  1a) [27, 28]. Similarly, TP53 muta-
tions clustered in known hotspots within the DNA-
binding domain, which may result in the loss of tumor 
suppression by affecting its ability to bind to DNA (Sup-
plementary Fig. 1b).

Despite their established roles in cancer progression, 
none of these driver mutations was associated with 
10-year LR risk (Firth’s penalized likelihood Cox regres-
sion p-value > 0.5), suggesting that additional factors 
influence DCIS prognosis.

Identification of mutations associated with increased local 
recurrence risk regardless of treatment
To identify potential prognostic markers, we analyzed 
mutated genes associated with the risk of invasive or 
in-situ LR in the ipsilateral breast occurring between 
6  months and 10  years after diagnosis. Our survival 
analysis identified five biomarkers each significantly 
associated with increased 10-year LR risk (Firth’s penal-
ized likelihood Cox regression p-value < 0.01 & permuted 

p-value < 0.05; Fig.  3a-b). These mutations, occurring 
in 4-7% of cases, were largely mutually exclusive and 
occurred across molecular subtypes and grades.

The presence of mutations in at least one of these genes 
was significantly associated with increased recurrence 
risk (Fig.  3c, log-rank p-value p < 0.0001), with MYO7A 
and PDZD8 showing the strongest associations (Firth’s 
penalized likelihood Cox regression HR > 4.4, Fig.  3b). 
Gene Ontology analysis revealed that most genes are 
involved in multiple interrelated cellular processes 
including cell adhesion (MYO7A, SH2B2), organization 
and function of the cellular membrane (PDZD8, MUCL3, 
MYO7A), and cellular organization and cytoskeleton 
(MYO7A, PDZD8) (Fig.  3d). Additionally, DNASE2B, a 
member of the DNase II family of endonucleases, was 
identified among the significant genes. These findings 
underscore how cytoskeletal reorganization, changes 
in cell structure, and compromised cell adhesion might 
contribute to increased risk of recurrence within 10 years 
after a DCIS diagnosis.

Mutations in genes governing cytoskeletal organization 
and membrane dynamics associated with radiotherapy 
resistance
To identify predictive biomarkers for RT response, we 
analyzed mutations associated with 10-year local recur-
rence in a cohort restricted to patients who received RT. 
This analysis revealed 29 genes significantly associated 
with an increased risk of recurrence (Firth’s penalized 
likelihood Cox regression p-value < 0.05 & permuted 
p-value < 0.05; Fig.  4a). Notably, these mutations often 
co-occurred, with at least two mutated genes present 
in approximately 27% of lesions (20/73 patients treated 
with RT).

In RT-treated patients, lesions harboring mutations in 
at least two of these genes exhibited a markedly increased 
risk of LR (Firth’s penalized likelihood Cox regression 
HR = 4.8, 95% CI: 2.1–11.2, p = 0.0002), with most muta-
tion-positive recurrences occurring within 5 years post-
RT (Fig.  4b). Notably, while mutations in SH2B2 and 
MUCL3 were significantly associated with prognosis in 
both the overall cohort and the RT-treated subgroup, an 
RT-stratified analysis revealed that lesions harboring two 
mutations in the remaining 26 genes (which were altered 
in at least five lesions in the no-RT group) were predic-
tive of prognosis only in RT-treated patients (p < 0.0001) 
and not in those who did not receive RT (p > 0.5) (Sup-
plementary Fig. 2).

Given the frequent co-occurrence of these muta-
tions, we assessed whether overall TMB might explain 
the increased recurrence risk. Although several high-
TMB lesions were observed among patients with these 
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mutations (Fig.  4a,c), TMB itself was not significantly 
associated with LR risk (Firth’s penalized likelihood Cox 
regression p = 0.8). Indeed, many lesions with high TMB 
remained recurrence-free over 10  years, suggesting that 
specific mutations—not overall mutation load—drive LR 
after RT. We further examined potential confounding 
by clinico-pathological variables (i.e. age, grade, tumor 
size, multifocality and subtype) by adjusting our survival 
model for each factor. The predictive value of these muta-
tions remained significant (Firth’s penalized likelihood 
Cox regression p-values < 0.005), supporting their role as 
an independent risk factor for recurrence following RT.

Functional analysis revealed a network of interre-
lated cellular functions involved in actin cytoskeleton 

regulation, cellular polarity, and membrane dynamics—
processes essential for invasive behavior (Fig. 4d).

Alterations in SH2B2 and SORBS1, which modu-
late stress fiber formation and actin remodeling, and in 
PTPN13 and WWC1, which affect actomyosin tension 
at the cell leading edge, suggest disruptions in cytoskel-
etal dynamics. Additional genes associated with progno-
sis in RT-treated include KRT1, MUCL3, TMEM132C, 
TTLL10, EML5, CEP128, CFAP47, and KIF24, all of 
which contribute to maintaining cellular architecture, 
polarity, and adhesion (Fig. 4a). In addition, alterations in 
metabolic regulators—such as MGAM2 and AADACL3—
could influence the energetic and biosynthetic demands 
required in response to RT-induced stress, while REV1 is 

Fig. 3 Gene variants associated with an increased 10-year LR risk in DCIS. a Samples are in columns and variants are color-coded based on their 
classification. LR status and clinico-pathological characteristics of each lesion are depicted at the bottom. LR is defined as any recurrence, in situ 
or invasive, in the ipsilateral breast occurring between 6 months and 10 years after diagnosis. Right-hand side reports the proportion of each variant 
classification type. b Hazard ratio and confidence intervals for each significant mutated gene associated with increased 10-year LR risk (Firth’s 
penalized likelihood Cox regression). c Kaplan–Meier analysis of local recurrence-free survival (LRFS) comparing patients with mutations in at least 
one of the 5 genes (red) versus those without mutations (blue). d Cellular component Gene Ontology (GO) terms annotations for each significant 
gene
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implicated in DNA damage tolerance, a critical safeguard 
following genotoxic stress.

Collectively, these findings highlight the pivotal roles 
of cytoskeletal reorganization, membrane remodeling, 
metabolic regulation, and DNA repair pathways in the 
response to RT. The prognostic significance of these 
mutations in RT-treated patients suggests that these gene 
alterations may mediate resistance mechanisms triggered 
by RT-induced stress.

Differential mutational associations with in‑situ 
versus invasive local recurrence after radiotherapy
To investigate whether individual mutations are preferen-
tially linked to either in-situ or invasive LR, we refitted 
the gene-based survival models using each LR type as the 
sole endpoint (the alternative event was censored) and 
stratified the analyses by RT. For the full cohort we had 
retained genes with p < 0.01 and permutation p < 0.05; 
for the smaller RT-treated group we used p < 0.05 and 

Fig. 4 Mutations associated with radiotherapy resistance in DCIS. a An oncoplot showing the distribution of mutations in 29 genes significantly 
associated with LR in RT-treated patients. Color-coding indicates mutation types; clinical annotations show age, grade, molecular subtype, 
and 10-year recurrence status. b Kaplan–Meier analysis of LRFS comparing patients with mutations in at least two of the 29 genes (red) 
versus those without mutations (blue). c Distribution of TMB, shown as number of non-synonymous variants, log2 scale) for lesions with at least 
one mutation in two genes associated with LRFS colored by recurrence status at 10 years. d GO cellular component enrichment network analysis 
of recurrence-associated genes in RT-treated DCIS. Network visualization shows enriched GO terms (FDR < 0.2) from genes linked to LR following RT. 
Nodes represent individual GO terms with size proportional to gene count (> 2), and edges indicate significant semantic similarity between terms. 
Node color intensity corresponds to enrichment significance
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permutation p < 0.05. As in the main analysis, many sig-
nificant associations were found in RT-treated patients, 
with some overlap with significant genes found in the 
whole cohort (Fig. 5a).

Three genes—MUCL3, SH2B2 and C6orf118—were 
associated with outcome in at least three out of six anal-
yses (Fig. 5a). In RT-treated tumours, fifteen genes were 
associated with in-situ LR or with “any LR”, and two 
genes (CFAP47, KRT1) were associated with invasive or 
with “any LR” (Fig. 5a). Nineteen additional genes were 
uniquely associated with in-situ LR (Fig.  5b), whereas 

thirteen were unique to invasive LR (Fig. 5c) within the 
RT subgroup. The Kaplan-Meyer analyses demonstrate 
that patients whose lesions harbor mutations in at least 
two genes from either the in-situ-specific or invasive-
specific gene sets show significantly worse LR-free 
survival only for the corresponding recurrence type 
(Fig. 5d,e).

Functional annotation indicates that mutations 
uniquely linked to in-situ LR occur mainly in genes that 
preserve epithelial architecture and mechanosensing: 
anchoring-junction components that couple cells to 

Fig. 5 Differential mutational associations with in-situ versus invasive local recurrence after radiotherapy. a An UpSet plot showing the number 
of genes significantly associated with risk of invasive, in-situ or any LR in the whole cohort (all) and in RT-treated (RT) or untreated patients (noRT), 
with intersections between gene lists indicated by connected dots below and corresponding size of the intersection depicted in the barplot 
on the right. b Oncoplot showing mutations in genes uniquely associated with in-situ LR (n = 19) in RT-treated patients. Color-coding indicates 
mutation types; clinical annotations show age, grade, molecular subtype, and recurrence status. c Similar to b but showing mutations in genes 
uniquely associated with invasive LR (n = 13) in RT-treated patients. d Kaplan–Meier analysis of in-situ (left) or invasive (right) LRFS comparing 
patients with mutations in at least two of the 19 genes uniquely associated with in-situ LR (red) versus those without mutations (blue). e Similar 
to d but comparing in-situ or invasive LRFS between patients with mutations in at least two of the 13 genes uniquely associated with invasive LR 
versus those without mutations
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neighbouring cells or to the extracellular matrix (DMD, 
FOCAD), the stretch-activated channel PIEZO1, and 
scaffolds/adaptors localised to actin-rich membrane 
projections such as invadopodia (SHANK3, PRAG1). 
The set also includes WDFY4, a WD-repeat/FYVE-
domain autophagy adaptor implicated in MHC-II antigen 
presentation.

Conversely, mutations associated with invasive LR 
after RT mapped to genes involved in late cytokinetic 
abscission (PDCD6IP), centriole-to-centrosome matura-
tion (CEP295), DNA-damage sensing and repair (SETX, 
TNKS1BP1), calcium-regulated motility (CACNA1I) and 
cytokine-dependent inflammatory signalling (TYK2).

Because stratifying simultaneously by treatment and 
LR type reduces sample size and event numbers, we can-
not exclude the possibility that some endpoint-specific 
associations—or the absence of others—reflect differ-
ences in statistical power. Nevertheless, these findings 
suggest that distinct biological programs—structural 
maintenance versus cell-cycle, genome-stability and 
inflammatory pathways—underlie in-situ and invasive 
patterns of recurrence after RT.

Copy number alterations display molecular 
subtype‑specific patterns with select genomic regions 
linked to local recurrence
Analysis of copy number alterations (CNAs) revealed 
recurrent chromosomal changes similar to those 
reported in invasive breast cancer (Fig.  6a). Significant 
gains were identified on chromosomal arms 1q, 8q, 16p, 
17q, 20p, and 20q, while losses predominantly occurred 
on 8p, 9p, 11q, 13q, 14q, 16q, and 17p (binomial test, 
FDR < 0.05).

Global CNA burden varied considerably across sam-
ples, with approximately half showing minimal altera-
tions (global CNA score < −0.58; Fig.  6b). Basal-like 
tumors exhibited greater CNA burden, while normal-like 
tumors showed fewer alterations (Fig. 6b, Supplementary 
Fig.  2a). Similarly, high-grade lesions showed a greater 
CNA burden compared to low-grade lesions (Supple-
mentary Fig. 3b).

We identified distinct CNA patterns across molecular 
subtypes: basal-like tumors showed enrichment for gains 
on 8q, 13q, and 19q; LumA tumors frequently exhibited 
16q loss; and Her2-enriched tumors showed characteris-
tic 17q12 gains corresponding to the ERBB2 locus (Fish-
er’s exact test, p < 0.005; Supplementary Fig. 3c).

Fourteen cytoband regions were significantly associ-
ated with increased 10-year LR risk after grade adjust-
ment (Firth’s penalized likelihood Cox regression p-value 
& permuted p-values < 0.05; Fig.  6c). These included 
copy number losses in five non-adjacent cytobands and 
gains in three non-adjacent cytobands. When analyzing 

invasive LR specifically, four regions were shared (losses 
in 5q32-33, 9p21, 18p11), with two additional losses 
identified in 9p13 and 8q11 and one gain in 5p15 (Firth’s 
penalized likelihood Cox regression p-value < 0.01 & per-
muted p-value < 0.05).

Copy number losses could alter critical tumor sup-
pressor functions, as evidenced by the presence of sev-
eral well-known tumor suppressor genes within these 
regions. Notable examples include CDKN2A at 9p21 (a 
key regulator of cell cycle progression), PRDM4 at 12q23-
24 (involved in cell differentiation and tumorigenesis) 
[29], SPARC  at 5q33 (important for extracellular matrix 
synthesis and modulation of cell shape) [30] and MITO-
STATIN at 12q24 (a mitochondrial protein with tumor 
suppressor activity) [31]. Additional loss highlights dis-
ruptions in cell adhesion and intercellular contacts as 
loss of 18p11 may affect DAL-1, a known regulator of cell 
adhesion and link between cell membrane and cytoskel-
eton [32, 33].

Gains were identified in regions harboring oncogenes 
or potential cancer-related genes. For example, amplifi-
cation in the 11q region—including 11q13, which con-
tains CCND1 and CTTN— previously associated with 
breast cancer aggressiveness [34, 35]. Additionally, a gain 
in 5p14 includes four cadherin genes (CDH10, CDH9, 
CDH12, CDH18) and PRDM9, whose aberrant expres-
sion has been associated with genomic instability [36].

Collectively, these findings demonstrate that the CNAs 
associated with 10-year LR not only affect regions har-
boring established tumor suppressors and oncogenes but 
also target regions involved in cell structural integrity 
and cell-cell interactions, potentially contributing to an 
aggressive and treatment-resistant phenotype.

Contextualizing our genomic findings with prior profiling 
studies: consistent early mutational drivers, novel 
subtype‑specific CNA patterns, and predictors of RT 
response
Most prior DCIS genomic studies analyzed small cohorts 
(< 100 cases) and primarily focused on DCIS cases with 
concurrent invasive disease (synchronous DCIS) rather 
than pure DCIS (Supplementary Table  2). While recent 
larger studies, such as those by Strand et al. (2022) [20] 
and Kader et al. (2024) [37], examined hundreds of pure 
DCIS cases, their reliance on low-pass sequencing or 
lack of matched normal tissues limits the sensitivity for 
detecting genomic changes, particularly when working 
with FFPE samples, which are often the only available 
option for DCIS studies.

Across studies, PIK3CA and TP53 consistently 
emerged as the most frequently mutated genes in DCIS 
(and invasive disease), with mutation rates ranging 
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Fig. 6 Frequent copy number alterations in pure DCIS and associations with 10-year LR risk. a Genome-wide frequency of absolute copy 
number gains and losses across chromosomes 1–22 (1 Mb window). The estimated ploidy for each sample is subtracted from the copy number 
values of each segment which means that a copy number of 0 is no copy number change. The y-axis shows the percentage of samples 
with each alteration type. Asterisks indicate statistical significance for chromosomal arm alterations b Heatmap showing copy number 
profiles per cytoband across samples (rows), ordered by global CNA score (GCS). Sample annotations include age, grade, molecular subtype 
and LR status at 10 years. c Heatmap of twenty genomic regions significantly associated with 10-year risk of local recurrence (Firth’s penalized 
likelihood Cox regression p-value < 0.05 adjusted for grade), showing copy number status. CNAs present in at least 5 patients are shown, with copy 
number gains in red and losses in blue. Samples and regions were clustered using Ward’s hierarchical clustering with Minkowski distance metric
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from 21-55% and 17-52%, respectively (Supplementary 
Tables 2–3). In our cohort, PIK3CA and TP53 were also 
among the most frequently mutated genes and identi-
fied as tumorigenesis drivers in pure DCIS. Mutations 
in GATA3 and ERBB2, which were reported in several 
studies, were only detected in a small number of lesions 
in our cohort (n = 3 and 7, respectively, Supplementary 
Table 3). Overall, we observe very little overlap between 
genes reported as frequently mutated across studies 
(Supplementary Table 3). Differences across studies likely 
reflect variations in methodology, including variant-call-
ing pipelines, sample types (e.g., synchronous vs. pure 
DCIS), cohort composition (e.g., histological grade and 
ER/HER2 status), and our study’s specific focus on LR 
and RT response, complicating direct comparisons. Nev-
ertheless, the consistent identification of PIK3CA and 
TP53 as the most frequently mutated genes across stud-
ies and in our cohort reinforces their pivotal roles in the 
early stages of breast tumorigenesis.

Recurrent CNAs in regions such as 1q, 8q, and 17q 
gains, as well as 8p, 11q, and 16q losses, were observed 
in our study, consistent with prior DCIS findings, includ-
ing those from Strand et  al. (2022) [20] and Abba et  al. 
(2015) [15]. For example, Strand et  al. (2022) identified 
29 recurrent CNAs in DCIS but found no single CNA 
predictive of recurrence [20]. In contrast, we identified 
twenty genomic regions significantly associated with 
10-year LR risk, including regions containing known 
tumor suppressors and oncogenes. These differences may 
reflect the higher resolution of our sequencing approach 
(100 X whole-exome sequencing) compared to the low-
pass sequencing used in prior studies. Our study also 
provides valuable new insights into molecular subtype-
specific CNA patterns in DCIS. In our cohort, basal-like 
tumors exhibited gains on 8q, 13q, and 19q; Luminal A 
tumors displayed 16q loss; and Her2-enriched tumors 
showed 17q12 gains encompassing ERBB2. Aside from 
amplifications in HER2-positive subtypes, subtype-
specific CNA analyses remain poorly represented in the 
DCIS literature but are well established in invasive breast 
cancer (see Supplementary Text). These findings suggest 
that genetic and molecular aberrations defining subtypes 
likely arise early and are at least partially established at 
the DCIS stage.

Finally, while several studies have explored prognos-
tic markers of recurrence, few account for treatment 
variation, and none specifically examined markers of RT 
response (Supplementary Table  2). Our study uniquely 
identified genetic alterations within a gene network that 
integrates cytoskeletal integrity, cell-cell interactions, cell 
adhesion, and metabolism which are associated with an 
increased risk of LR within ten years following RT. These 
findings suggest that these alterations may play a critical 

role in resistance mechanisms activated by RT-induced 
stress.

Discussion
Our study provides a comprehensive analysis of pure 
DCIS, focusing on DNA profiles associated with disease 
prognosis and response to RT. While previous research 
has primarily examined genomic changes in synchronous 
DCIS compared to IDC or pure DCIS, our work offers 
a detailed view of the mutational landscape specific to 
pure DCIS and its association with LR. Importantly, we 
identified genomic alterations associated with molecu-
lar subtypes and, most critically, LR—both regardless of 
treatment and specifically in cases following RT—high-
lighting potential molecular drivers of treatment out-
comes. We also observed distinct mutational processes 
in early-onset DCIS with high tumor mutational burden 
potentially driven by impaired mismatch repair, but these 
were not associated with prognosis.

While driver genes like TP53 and PIK3CA are critical 
in the early stages of tumorigenesis, our study did not 
find any significant associations between their muta-
tions and disease progression or response to treatment. 
These findings suggest that TP53 and PIK3CA mutations 
are essential for overcoming initial biological constraints 
during early tumor development but may become less 
relevant to progression once these barriers are surpassed. 
This aligns with prior research showing that these muta-
tions are frequently retained in invasive carcinoma but 
occur at higher prevalence in hyperplastic and DCIS 
lesions [38].

Furthermore, their prognostic relevance appears to 
depend on tumor clinicopathological characteristics. For 
example, Lin et  al. [11] observed an inverse association 
between PIK3CA kinase domain mutations in high-grade 
DCIS tumors and progression, while Silwal-Pandit et al. 
[39] reported that the prognostic impact of TP53 muta-
tions varied across molecular subtypes of invasive breast 
cancer. These findings underscore the complexity of 
breast cancer progression, where early driver mutations 
interact with additional genetic and microenvironmental 
factors to shape disease outcomes.

We identified recurrent CNAs frequently reported 
in the literature, including gains on 8q [10–12, 14, 15, 
37, 40], 17q [10, 12, 15, 18–20, 37, 40], 20q [37, 40], and 
losses on 11q [10–12, 18, 19, 37] and 16q [10, 13, 14, 
20, 40]. These CNAs mirror those observed in invasive 
ductal carcinoma, suggesting that pure DCIS already 
harbors genomic features characteristic of invasive can-
cer—including alterations that define molecular subtypes 
(e.g., basal-like, luminal-A, or Her2-enriched tumors; see 
Supplementary Text). Moreover, this observation is con-
sistent with earlier transcriptional and epigenetic studies 
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that show subtype-specific alterations in gene expression 
and DNA methylation are already evident in DCIS [41, 
42]. These findings suggest that genetic and molecular 
aberrations defining subtypes likely emerge early - being 
at least partially established at the DCIS stage - and sup-
port a model of subtype-specific progression from DCIS 
to invasive breast cancer [41].

Importantly, our study also revealed novel associations 
between mutations in genes regulating cytoskeletal integ-
rity, cell membrane organization and function, cell-cell 
interactions, and cell adhesion, and the risk of LR in pure 
DCIS. Across the cohort, five genes were significantly 
associated with LR, underscoring their potential roles in 
tumor progression. These mutations were not frequently 
co-occurring in the same patient, and involved genes 
maintaining cell adhesion (MYO7A, SH2B2), organizing 
and supporting cellular organization, cytoskeleton and 
membrane function (PDZD8, MUCL3, MYO7A). When 
the cohort was stratified by RT administration, 27 unique 
genes - excluding SH2B2 and MUCL3 - were significantly 
associated with increased LR risk in RT-treated patients. 
Many of these mutations were identified in genes criti-
cal for maintaining cellular architecture, polarity, and 
adhesion, such as KRT1, MUCL3, TMEM132C, TTLL10, 
EML5, CEP128, CFAP47, and KIF24, highlighting how 
disruptions in structural integrity and epithelial cell 
organization may undermine the effectiveness of RT and 
contribute to LR. In addition to structural changes, meta-
bolic regulators like MGAM2 and AADACL3 may influ-
ence the energetic and biosynthetic demands required for 
cell survival and adaptation under genotoxic conditions. 
Alterations in REV1, a key player in DNA damage toler-
ance, underscore the importance of effective DNA repair 
mechanisms following RT. These findings expand upon 
prior studies linking disruptions in tissue structure and 
cell adhesion to DCIS progression [43–46], while provid-
ing novel insights into their specific roles in recurrence 
following RT in pure DCIS.

Notably, our analysis also revealed distinct biological 
programs underlying in-situ versus invasive recurrence 
following RT. Specifically, while some mutations in genes 
involved in structural maintenance and mechanosensory 
pathways were uniquely associated with in-situ relapse, 
invasive progression was characterized by alterations in 
cell-cycle regulation, genome stability, and inflammatory 
signaling. Because stratifying by both treatment and LR 
type reduced our statistical power, these molecular dis-
tinctions will require confirmation in larger cohorts.

Finally, we uniquely identified losses in cytobands har-
boring established tumor suppressor genes—such as 
CDKN2A in 9p21 and PRDM4 in 12q23–24–as well as 
regions containing genes crucial for cell adhesion and 
migration, including DAL-1 in 18p11. In parallel, gains in 

regions like 11q, which includes oncogenic drivers such 
as CCND1 and CTTN, suggest that oncogene amplifica-
tion may further contribute to tumor aggressiveness and 
ultimately patient prognosis. Gains at 5p14, containing 
cadherin genes (CDH10, CDH9, CDH12, CDH18), again 
emphasize the importance of maintaining epithelial 
integrity to prevent LR in pure DCIS patients.

Future studies are warranted to investigate how these 
mutations interact with other molecular pathways and 
microenvironmental factors to elucidate their contribu-
tion to DCIS prognosis and the adverse effects of RT. 
Such research could help identify strategies to mitigate 
recurrence risk following RT and improve treatment out-
comes [47–49].

Conclusions
Our findings uncover the genomic landscape of pure 
DCIS and highlight key factors that contribute to LR 
and mediate the adverse effects of RT. While TP53 and 
PIK3CA mutations play important roles in early tumo-
rigenesis, they do not predict recurrence, emphasizing 
the need for alternative biomarkers. We identify distinct 
mutational processes and genetic alterations that dis-
rupt cytoskeletal integrity, cell-cell interactions and cell 
adhesion, potentially destabilizing the epithelial tissue 
environment and contributing to recurrence, particu-
larly following RT-induced stress. Importantly, our data 
also suggest that in-situ and invasive recurrences after 
RT may follow divergent molecular trajectories—muta-
tions affecting structural maintenance and mechanosen-
sory pathways were specifically linked to in-situ relapse, 
whereas alterations in cell-cycle regulation, genome sta-
bility, and inflammatory signaling characterized inva-
sive progression. These insights provide a foundation 
for understanding the genetic basis of DCIS progression 
and identifying potential molecular drivers of treatment 
resistance. Future research will be essential to translate 
these insights into clinical practice, guiding the devel-
opment of more targeted therapeutic approaches to 
improve outcomes for patients with DCIS.

Methods
The Ontario DCIS cohort
The Ontario DCIS Cohort was established at the Sun-
nybrook Health Sciences Center (Toronto, Canada) as 
a population-based sample of women diagnosed with 
pure DCIS defined as in  situ cancer without any inva-
sive component between 1994 and 2003 [50–52]. All 
patients underwent BCS, with a subset receiving sub-
sequent RT as part of their standard-of-care. Adjuvant 
endocrine therapy was administered to less than 15% 
of individuals, while none received systemic chemo-
therapy or neoadjuvant endocrine therapy. The cohort 
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features comprehensive annotation of clinical annota-
tion and expert pathology review. Previous studies of this 
cohort have characterized outcomes based on clinical 
factors including age at diagnosis, pathological features 
(tumor size and nuclear grade), and treatment modalities 
[53–56].

Sample selection was prioritized to achieve bal-
anced representation between RT-treated and untreated 
patients, with equivalent distributions of individuals who 
did or did not develop an invasive or in-situ ipsilateral 
recurrence within ten years. Tissue cores were obtained 
from FFPE blocks, sampling DCIS tumors without 
microinvasion alongside adjacent normal and stromal 
tissues. DNA and RNA were extracted using the Qiagen 
AllPrep FFPE DNA/RNA kit (Qiagen). Samples yielding 
sufficient DNA quantities underwent library construc-
tion using the Agilent SureSelect Human Exome library 
preparation kit and were sequenced on the NovaSeq6000 
platform (100 bp paired-end, 100 M reads/sample) at the 
Genome Quebec Innovation Centre (Montreal, Canada). 
While high-quality sequencing data was obtained for 300 
tumor tissues, downstream analyses focused on 147 sam-
ples with matched normal profiles (144 normal tissue and 
3 stroma non-epithelial samples).

Molecular subtypes were determined using RNA pro-
files available for a subset of patients (n = 122). Sequenc-
ing libraries were prepared using RNA Flex kit (Illumina). 
Raw reads were processed using TrimGalore to remove 
adapters and low-quality reads [57], followed by align-
ment to the human genome (Ensembl release v104) using 
STAR  [58]. Reads counts were mapped to genomic fea-
tures using Rsubread R package [59] and gene counts 
were normalized using the variance stabilizing trans-
formation implemented in the DESeq2 R package [60]. 
PAM50 subtype classification was performed using the 
genefu R package [61] with established centroids [62]. 
Specifically, normalized expression data of the 50 PAM50 
genes were obtained using variance stabilizing transfor-
mation implemented in the DESeq2 R package [60] and 
compared to subtype-specific centroids using Pearson 
correlations. Each sample was assigned to the molecu-
lar subtype with which it showed the highest correlation 
coefficient.

Whole‑exome sequencing data preprocessing
Raw reads were processed using Trimmomatic [63] (ver-
sion 0.39) to remove adaptor sequences and low-qual-
ity bases. Reads were trimmed to retain high-quality 
sequences, applying quality thresholds of 10 at read ends 
and 20 within a 4-base sliding window. The remain-
ing paired reads were processed following the GATK4 
best practices. Briefly, reads were aligned to the human 
reference genome (GRCh38, GATK resource bundle) 

using the Burrows-Wheeler Aligner (BWA) [64]. Post-
alignment procedures included sorting, annotating reads 
with read groups, and marking duplicate reads with 
Picard. Base quality score recalibration was conducted 
using GATK4 tools. A recalibration table was generated 
with the BaseRecalibrator function using known 
variant sites (dbSNP138 for SNPs and Mills and 1000 
Genomes for indels), and recalibration was applied with 
ApplyBQSR to adjust base quality scores and correct for 
systematic technical errors. The process focused on Sure-
Select Human Exons v7 regions with a 100 bp padding. 
Finally, properly paired reads were extracted, excluding 
secondary alignments and low-quality reads, with the 
resulting files indexed using Samtools [65]. After filtra-
tion, samples had a mean coverage depth of 152X (range: 
52-308X, standard deviation: 42X).

Single nucleotide variant & indel calling
For variant calling, we used NeuSomatic [66], a deep 
learning approach that leverages both tumor and 
matched normal sequence alignment information, along-
side somatic mutation calls from six different approaches: 
MuTect2, MuSE, VarDict, VarScan2, Strelka2, and 
SomaticSniper [67–72]. This method was selected 
because of the low level of agreement between callers in 
our data - the majority of mutations (88.7%) were iden-
tified by only one caller (Supplementary Fig.  4a) - an 
observation consistent with previous studies [73–75]. 
The number of mutations detected varied significantly 
across samples, with the minimum identified in any sin-
gle sample being 1,563 mutations, and the maximum 
reaching 283,247 mutations (Supplementary Fig. 4a).

Small-variant calling has become increasingly amena-
ble to deep learning approaches, thanks to the availability 
of extensive sequencing data and robust benchmarking 
datasets that cover millions of variants across diverse 
genomic contexts [76]. A convolutional neural network 
architecture leverages information from sequencing 
reads and the reference genome in the vicinity of each 
candidate variant to approximate complex, nonlinear 
functions, accurately classifying loci as homozygous vari-
ant, heterozygous variant or homozygous reference (non-
variant) [66].

Best practices established using well-characterized 
somatic reference datasets from the SEQC-II consor-
tium demonstrated that NeuSomatic models achieve 
robust performance across various sequencing tech-
nologies - including both fresh and FFPE DNA inputs 
- across a range of tumor/normal purities and sequenc-
ing coverages, significantly outperforming conventional 
approaches [73]. Accordingly, we used the ensemble 
extension of NeuSomatic. This extension combines out-
puts from six individual variant callers by integrating 
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features from 93 channels and incorporates an addi-
tional 26 channels to capture alignment information in 
a window of seven bases around the candidate mutation, 
resulting in a total of 119 input channels per candidate 
matrix. We used the recommended pre-trained model 
SEQC-II (SEQC-WGS-Spike model), which was trained 
on 20 whole-genome sequencing replicate pairs contain-
ing in silico somatic mutations with allele frequencies 
ranging from 1 to 100% (with matched normals at both 
95% and 100% purity, and sequencing coverage rang-
ing from ~ 40 × to 220x) and using five variant callers: 
MuTect2, Strelka2, MuSE, SomaticSniper, VarDict. After 
mutation calling, the recommended post-processing was 
applied to resolve long INDEL sequences and the final 
NeuSomatic predictions were used for all downstream 
analyses.

We obtained comprehensive genomic information for 
each variant using the Ensembl Variant Effect Predictor 
(VEP) [77]. This included the effects on gene and pro-
tein function, such as consequence types and amino acid 
changes, variant frequencies in different populations, 
impact on regulatory regions, and potential associations 
with diseases and phenotypes. Following annotation 
with the Ensembl VEP, we used the vcf2maf tool to 
transform VEP-annotated VCF files into the Mutation 
Annotation Format (MAF). This conversion ensures 
each variant is uniquely associated with a single gene 
transcript or isoform, despite the potential for a variant 
to impact multiple isoforms. Particularly in cases where 
variants could be classified under different effects — such 
as a Missense_Mutation near a Splice_Site— 
the MAF format forces a singular designation for each 
variant by leveraging VEP’s determinations for canonical 
isoforms. 

We excluded 100 genes commonly mutated in public 
exome datasets (FLAGS) due to their lower likelihood 
of disease association [78]. This decision stems from 
their longer coding regions, which inherently increase 
mutation probability, and the presence of paralogs 
that might offset functional loss these mutations could 
cause [78, 79].

High-confidence variants (identified with a probability 
score of 0.7 or higher) consistently showed higher allele 
frequencies compared to those categorized as low-qual-
ity (with scores between 0.4 and 0.7) and rejected vari-
ants (with scores below 0.4) (Supplementary Fig. 4b). To 
reduce potential false positives, we selected high-confi-
dence variants with allele frequency above 0.1. To further 
confirm that variants detected were not technical arti-
facts, we assessed the relationship between tumor muta-
tional burden and sequencing depth (Supplementary 
Fig.  5). The lack of correlation supports robust variant 
detection independent of coverage.

Mutation patterns and frequencies were visualized 
using the oncoplot function from the maftools R 
package [80], which displays mutation types and frequen-
cies across samples.

Mutational signatures
We performed mutational signature analysis using the 
COSMIC database of single-base substitution (SBS) sig-
natures [24]. First, the trinucleotide context of each single 
nucleotide variant was characterized. We then used the 
fit_to_signature function in the MutationalPat-
terns R package (version 3.19) [81] to find the linear 
combination of COSMIC mutation signatures that most 
closely reconstructs the mutation spectra for each sam-
ple by solving the nonnegative least-squares constraints 
problem. We used strict refit where the signature with 
the lowest contribution is removed; refitting is repeated 
until the cosine similarity between the original and recon-
structed profile becomes more than max_delta = 0.004). 
We selected signatures that contributed to the mutation 
spectrum of at least 10 samples and plotted their relative 
contributions using the pheatmap R package [82].

Driver genes
To identify driver genes (i.e., genes under positive selec-
tion in cancer), we used the dNdScv analysis method 
[26]. This approach is based on the evaluation of the ratio 
between synonymous (silent) mutations and non-syn-
onymous (missense) mutations in genes. A higher ratio 
of non-synonymous to synonymous mutations in a gene 
indicates positive selection for mutations that may confer 
a growth advantage to cancer cells, suggesting the poten-
tial role of the gene as a driver in tumorigenesis.

The dNdScv method estimates the background mutation 
rate of each gene by combining local information (synony-
mous mutations within the gene) with global information 
(variation of mutation rates across genes). This approach 
controls for the sequence composition of genes and accounts 
for mutational signatures, providing a more accurate estima-
tion of the expected neutral mutation rate. In particular, the 
dNdScv R package [83] implementation uses trinucleotide 
context-dependent substitution matrices to mitigate com-
mon mutation biases that can affect dN/dS calculations [26]. 

To visualize and analyze the distribution and nature of 
mutations in driver genes, we used lollipop plots gener-
ated from the maftools R package [80] and annotation 
tracks from cBioPortal [84]. These plots provide a repre-
sentation of mutation types and their locations along the 
protein sequence as well as annotations including likely 
mutation hotspots as identified by Memorial Sloan Ket-
tering Cancer Hotspots and 3D Hotspots databases [85], 
and annotation records of therapeutic indication from 
OncoKB [86].
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Copy Number Alterations (CNAs)
To investigate copy number alterations, we applied 
the Allele-Specific Copy Number Analysis of Tumours 
(ASCAT v3) on our tumor normal pairs estimating tumor 
purity, ploidy, and allele-specific copy number [87]. The 
runAscat function was executed with default settings 
optimized for high-throughput exome sequencing data, 
with the gamma parameter set to 1. After examination of 
ASCAT sunrise plots, we identified a subset of samples 
(n = 35 samples), for which the initial estimates of tumor 
purity and ploidy did not align with the regions of highest 
confidence on the sunrise plots. The runAscat was re-
run for these samples by manually assigning the aberrant 
cell fraction (tumor purity) and tumor ploidy parameters 
corresponding to the regions of highest probability as 
depicted on the sunrise plots. Overall, eight samples were 
excluded from further analysis due to poor goodness of fit 
leaving 139 samples with CNA profiles for downstream 
analyses. Absolute number gains and losses shared across 
samples were visualized across whole chromosomal 
regions using aCNViewer  [88] (window size of 1 Mbp). 
The estimated ploidy for each sample is subtracted from 
the copy number values of each segment which means 
that a copy number of 0 is copy number change. These 
adjusted windows at base resolution are then plotted into 
a stacked histogram representing genome-wide absolute 
copy number and copy neutral variations over all samples 
in a group.

We applied a re-segmentation approach to adjust for 
amplitude divergence due to technical variability imple-
mented in CNApp [89] using the default settings (mini-
mum segment length = 100 Kbp, minimum amplitude 
deviation from segment to zero = 0.16, maximum dis-
tance between segments = 1  Mb, maximum amplitude 
deviation between segments = 0.16, and maximum BAF 
deviation between segments = 0.1). Re-segmented data 
were then used to calculate the broad, focal and global 
CNA scores. We then transformed re-segmented data 
into genomic regions profiles (chromosome arms, cyto-
bands and sub-cytobands) using both focal and broad 
segments. Length-relative means are computed for each 
window by considering amplitude values from those seg-
ments included in each specific window. Default cutoffs 
for low-level copy number gains and losses (i.e., |0.2|) 
were used to infer CNA frequencies. 

Survival analyses
We evaluated the association between gene muta-
tions or copy number aberrations in cytobands and 
10-year  LRFS using Firth’s penalized likelihood Cox 
regression which accounts for small sample sizes and 
rare events. This analysis was conducted using the 
coxphf R package [90]. Aberrations were included 

in the analysis only if detected in at least five lesions 
(2,030 genes; 303 cytobands). This analysis was per-
formed across the entire patient cohort. To further 
investigate mutated genes associated with response to 
RT, a stratified analysis was conducted based on treat-
ment groups. 

To control for multiple testing in the identification of 
mutated genes associated with LR, we employed per-
mutation-based testing (1,000 permutations) to estab-
lish empirical significance thresholds. We required both 
a traditional p-value threshold (p < 0.01 for full-cohort 
analyses; p < 0.05 for RT-stratified analyses) and a per-
muted p-value < 0.05.

Kaplan–Meier survival curves were used to visualize 
the results, illustrating event-free survival probabilities 
over time for patients stratified by mutational status in 
the specified genes or gene sets.

GO enrichment analyses were performed using the 
clusterProfiler R package [91]. Entrez gene identifiers 
were mapped to GO terms using the org.Hs.eg.db 
annotation database [92]. All GO terms with FDR < 0.2 
were considered. Semantic similarity between GO terms 
was calculated using the Wang method implemented in 
the pairwise_termsim function [93]. The enrich-
ment map was visualized using the emapplot function 
[94] which displays the significantly enriched terms with 
at least 2 genes.

Third‑party studies
A systematic literature search was performed using 
PubMed to identify previous studies that conducted 
DNA profiling on pure DCIS or DCIS mixed with inva-
sive lesions. The search strategy included terms related 
to “ductal carcinoma in  situ”, “genetic markers”, “DCIS 
prognosis”, “DCIS progression”, “DCIS to IDC”, "dcis 
dna", "dcis prognosis dna markers", "copy number altera-
tions", and “somatic mutations”. Studies were included if 
they reported genomic analyses of DCIS samples using 
sequencing or copy number profiling techniques and 
were published within the last 10  years. Twelve stud-
ies met the inclusion criteria, and their key findings 
were summarized in Supplementary Table 2. The review 
emphasized genetic alterations and pathway dysregula-
tion that may drive DCIS initiation and progression to 
invasive disease.
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