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ABSTRACT We present deep learning-based approaches for exploring the complex
array of morphologies exhibited by the opportunistic human pathogen Candida albi-
cans. Our system, entitled Candescence, automatically detects C. albicans cells from dif-
ferential image contrast microscopy and labels each detected cell with one of nine
morphologies. This ranges from yeast white and opaque forms to hyphal and pseudo-
hyphal filamentous morphologies. The software is based upon a fully convolutional
one-stage (FCOS) object detector, a deep learning technique that uses an extensive
set of images that we manually annotated with the location and morphology of each
cell. We developed a novel cumulative curriculum-based learning strategy that strati-
fies our images by difficulty from simple yeast forms to complex filamentous architec-
tures. Candescence achieves very good performance (;85% recall; 81% precision) on
this difficult learning set, where some images contain hundreds of cells with substan-
tial intermixing between the predicted classes. To capture the essence of each C. albi-
cans morphology and how they intermix, we used a second technique from deep
learning entitled generative adversarial networks. The resultant models allow us to
identify and explore technical variables, developmental trajectories, and morphological
switches. Importantly, the model allows us to quantitatively capture morphological
plasticity observed with genetically modified strains or strains grown in different media
and environments. We envision Candescence as a community meeting point for quan-
titative explorations of C. albicans morphology.

IMPORTANCE The fungus Candida albicans can “shape shift” between 12 morphologies
in response to environmental variables. The cytoprotective capacity provided by this
polymorphism makes C. albicans a formidable pathogen to treat clinically. Microscopy
images of C. albicans colonies can contain hundreds of cells in different morphological
states. Manual annotation of images can be difficult, especially as a result of densely
packed and filamentous colonies and of technical artifacts from the microscopy itself.
Manual annotation is inherently subjective, depending on the experience and opinion
of annotators. Here, we built a deep learning approach entitled Candescence to parse
images in an automated, quantitative, and objective fashion: each cell in an image is
located and labeled with its morphology. Candescence effectively replaces simple rules
based on visual phenotypes (size, shape, and shading) with neural circuitry capable of
capturing subtle but salient features in images that may be too complex for human
annotators.
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Fungal infections represent an urgent and significant threat to human health affect-
ing 1.2 billion people yearly (1–3). They kill approximately the same number of peo-

ple (1.6 million) as malaria (4) and are implicated in other diseases, including cancer
progression (5). Candida albicans is one of the most important of these human patho-
gens (6) and is associated with a significant socioeconomic burden (2, 7–9). As such, it
is an important system for studying fungal pathogenicity. C. albicans is morphologi-
cally classified as a pleomorphic yeast-like fungus, and its diverse range of morpholo-
gies predominate in different niches. The morphologies can be broadly partitioned
into mating-competent and vegetative forms (10, 11). We provide a brief review of the
morphologies central to our effort here (Fig. 1A to E).

Mating-competent morphologies include the white form, which has a round unicel-
lular morphology (Fig. 1A and B), predominantly found in the bloodstream and internal
environments (12). If engulfed by macrophages, the white yeast will switch to a hyphal
morphology as a means of immune escape (13). The opaque form is larger and more
elongated than the spherical white cells; it often colonizes skin (14). Switching
between the two morphologies is rare (;104 cell divisions), stochastic, and strongly
influenced by environmental cues and homozygosity of mating type. White cells are
believed to be better suited to internal infections, while opaque cells thrive in skin
infections (14). The gray morphology is an alternative, stable form between the white
and opaque morphologies. Gray cells are shiny and small like white cells yet elongated
like opaque cells in solid media (15). The shmoo morphology arises from opaque cells
which have formed a projection produced by the a and a types when preparing to
mate, leading to tetraploid zygote formation.

C. albicans can also assume vegetative morphologies, including the budding yeast
white cell and two distinct filamentous forms (Fig. 1C to E). The hyphal form is charac-
terized by long tube-like filaments without constrictions at the site of septation.
Hyphae are able to invade epithelial and endothelial cells and damage host tissue in
mucosal infections in order to gain access to the bloodstream (16) (Fig. 1D). The yeast-
to-hypha switch is initiated under a variety of environmental conditions, including
presence of serum, neutral pH, 5% CO2, and N-acetyl-D-glucosamine, among others
(17). In the first cell cycle, the germ tube morphology is observed, manifesting as a
tube projecting from the round yeast cell. The second filamentous growth form, the
pseudohypha, is significantly different from hyphae in many ways, including cellular
regulation, growth (18–20), and phenotypic presentation. Pseudohyphae tend to have
constrictions at the sites of septation and are wider than hyphae (Fig. 1E) (17). Cell divi-
sions in pseudohyphae are typically nearly synchronous, unlike hyphae, where subapi-
cal cells are often arrested in G1 for several cycles (21). Like hyphal cells, pseudohyphae
interact with the mouth, vagina, and bloodstream of the host. Some C. albicans mor-
phologies are not considered in our effort here, including the chlamydospore, gastroin-
testinally induced transition (GUT), trimera, and goliath morphologies (22, 23).

There have been several previous efforts in fungal image analysis (24), including
approaches to computationally differentiate between types of fungi and allergenic fun-
gal spores (25) and to characterize the macrostructure of mycelium or filamentous
growth (26–33). Tleis and Verbeek experimented with a suite of machine learning techni-
ques to segment Saccharomyces cerevisiae cells and measured a range of features and
textures from two-channel images acquired by laser scanning confocal microscopy (34).
Wang et al. provided a segmentation method with an efficient edge-tracing algorithm
for bright-field images of fission yeast, which have a consistent oblong morphology (35).
Another effort employed microfluidics to capture individual S. cerevisiae cells; nonfluores-
cent images were used to train a classifier of cell cycle state for each cell (36).

Deep learning, a toolkit exploited in our effort here, was first applied to biomedical
imaging in 2012 with the approach by Ciresan and colleagues (37) to automatically seg-
ment neuronal structures depicted in stacks of electron microscopy images. Several
image segmentation approaches appeared thereafter, including U-net from Ronneberger
et al. (38) and a now well-established deep learning architecture entitled Res-Net (39),
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FIG 1 (A) Example of a typical DIC image in Labelbox, a learning set creation tool for group annotation. (B) The colors indicate class of morphology.
The “artifact” class is used to bound imperfections and technical artifacts in the images, whereas the “unknown” class is used to bound cells for

(Continued on next page)
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which we exploited here. These have been extended to microscopy images, although
they are primarily used in the context of human tissue analyses (40–43). Nevertheless,
deep learning has introduced many new concepts, transformations, object localization
techniques, and strategies (44–47). This includes unsupervised generative adversarial
training (48) and variational autoencoder-based methods (49) and supervised methods
such as the faster region-based convolutional neural network (Faster R-CNN) (50). This
effort exploits both supervised and unsupervised deep learning.

With respect to fungi, there has been a significant effort to integrate robotically
controlled hardware with high-content image analysis tools to rapidly screen and ana-
lyze hundreds of thousands of images of S. cerevisiae in order to identify essential
genes and genetic interactions (51, 52). These works were the first to bring large-scale
image analysis at the subcellular level, including DeepLoc, a deep learning approach to
S. cerevisiae (53). With respect to C. albicans, Merson-Davies and Odds in 1989 were the
first to develop a quantitative model for differentiating between hyphae and pseudo-
hyphae based on the measurements of, for example, width of the tubes from micros-
copy images (54). Shortly thereafter, this group used these models to reason about the
nature of morphological plasticity (55).

Our effort here extends the power and type of models to identify and capture C. albicans
morphology by exploiting modern techniques from deep learning. We first developed a sys-
tem that can automatically detect C. albicans cells from microscopy images and label each
detected object with its morphology. The model was trained using our substantial compen-
dium of differential interference contrast (DIC) images (;1,200 images) containing individual
C. albicans cells (;80,000) in different morphological states. We treated this problem as a
multiclass, multiobject object detection problem where 15 distinct classes are used to
describe nine morphologies. Some images contain as many as two hundred tightly packed
cells. Our method builds upon a fully convolutional one-stage object detector (FCOS) (56);
FCOSs are more computationally efficient than techniques such as Faster R-CNN (they are
proposal and anchor free) and better predict the location of objects (via the “centerness”
optimization). We also designed a novel type of curriculum-based learning strategy that
stratifies images by difficulty but uses a cumulative approach that improved the perform-
ance of our system significantly. Then, building upon our ability to accurately identify and
classify cells, we developed a deep learning-based model that captures the essence of each
C. albicans morphology. This model, which is based upon a generative adversarial network
(GAN), can be interrogated to identify components of its latent space that control various
features of the images. This includes technical variables but also biologically relevant proc-
esses such as developmental trajectories or transitions between morphologies. These mod-
els provide the first dynamic and continuous approach to capturing the essence of the
different morphological states and transitions between them. We show how these models
can be used to automatically identify subtle changes from wild-type phenotype when given
images from genetically perturbed C. albicans populations.

RESULTS
A deep learning approach to recognizing C. albicans morphologies. Our first

goal was to develop a fully automated tool that identifies the location and morphology
of cells from microscopy images of C. albicans populations. We cast this challenge as a
multiobject, multiclass detection problem: the system (i) identifies the location of all

FIG 1 Legend (Continued)
which we could not judge morphology. (C) Labeling of an image that is enriched for pseudohyphae. Note that the overall intensities of our images
are not required to be the same. (D) Given the size and complexity of the filamentous forms, we annotated each hypha or pseudohypha using three
classes. (D and E) H-start and P-start are intended to label only the “start” of the hypha or pseudohypha. Since junctions are different between
hyphae and pseudohyphae, we labeled them with the H- and P-junction classes. Finally we bounded the entire filamentous object with a rectangle;
note that such bounding boxes overlap surrounding cells. (F) Our system is built upon the FCOS software with structure unaltered from Tian et al.
(56). (G) The Varasana learning set is first partitioned into three components (training, validation, and testing). Then both validation and testing are
split into six grades. The grades are ordered from white to hypha. When an image appears first in grade i, it is also included in all grades j . i. The
test set contains examples of both wild-type SC5314 and SN148a cells but also a collection of genetic and environmental perturbations that induced
abnormal C. albicans morphologies. (H) Using the Varasana learning set, we performed a grid search across several hyperparameters (n = ;30,000
combinations). Boldface indicates the combination of hyperparameters that had the best performance.
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C. albicans cells in each image and then (ii) predicts the morphology of each hypothe-
sized cell. Images may contain an arbitrary number of individual objects (cells or arti-
facts). Our system classifies nine of the 12 reported C. albicans morphologies: yeast
white, budding yeast, opaque, budding opaque, shmoo, gray-like, budding gray-like,
hypha, and pseudohypha. Each detected object is assigned the morphology with the
highest likelihood, provided that the probability of the prediction exceeds a user-
defined threshold, t .

Our software (entitled Candescence) is based on a FCOS (56), a new approach that
has several benefits over other deep learning algorithms for multiobject, multiclass
problems (Fig. 1F). One of its key advantages resides in how it flags areas of an image
likely to contain an object. Rather than requiring many parameters, which collectively
control the size, location, and total number of bounding boxes, the FCOS considers
each individual pixel in an image as potentially centering an object, eliminating the
need to optimize many hyperparameters simultaneously. FCOSs are able to handle
objects of variable size, an important property given the difference between, for exam-
ple, yeast white and hyphal cells.

FCOSs can make use of transfer learning, a technique where a neural network is first
trained in a distinct but similar context compared to the problem at hand. In our case,
we began with an FCOS trained with the ResNet-101 data set, a convolutional neural
network trained on more than a million images partitioned into 1,000 classes of com-
mon household objects and animals (39). Intuitively, transfer learning guarantees that
our neural network comes equipped with the basic circuitry to recognize simple
shapes, shades, edges, and textures. This is especially important when the number of
images for the new application is limited. Candescence exploits this rich feature repre-
sentation to be retrained for our morphologies, requiring only a tractable number of C.
albicans images. The architecture and technical parameters of the FCOS are described
in “A fully convolutional one-stage object detector for morphology classification” in
Materials and Methods.

An image compendium of C. albicans morphologies. Supervised machine learn-
ing problems, including this image recognition problem, exploit a learning set, which
is a curated collection of images where bounding boxes (a box that surrounds the
object) have been drawn and labeled for every object. We constructed such a learning
set by growing C. albicans SC5314 or SN148a colonies under conditions which induce
each of the nine morphologies (Table 1; also, see “Strains and media” in Materials and
Methods): yeast white, budding white, opaque, budding opaque, gray-like, budding
gray-like, shmoo, hypha, and pseudohypha. Each population was stained with calco-
fluor white and prepared for DIC and fluorescence microscopy at various magnifica-
tions (objective magnifications of 40, 60, and 100�; see “Microscopy” in Materials and
Methods). We also cultured and imaged C. albicans colonies that had specific genetic
perturbations known to affect morphology. In total, 1,214 images were generated (see
Table S1 in the supplemental material).

In each of the resultant DIC images, a bounding box was manually drawn around
each C. albicans cell and labeled with its morphological class following the guidelines
of Sudbery et al. (20), Whiteway and Bachewich (11), Tao et al. (15) and Noble et al. (22)
(see “Image annotation and development of the learning set” in Materials and
Methods). More specifically, cells with a round to oval morphology (4.9 mm by 6.8 mm)
were labeled as white unless they were attached to a second smaller white cell with
concomitant evidence of a bud site (decision making was assisted by manual inspec-
tion of the calcofluor white signal in the matched fluorescent image); in this case, they
were labeled as budding white (Fig. 1A and B). Ellipsoidal cells approximately twice the
size of white cells (9.5 mm by 11.8 mm) were labeled as opaque. Like white cells, they
were labeled as budding opaque if there was evidence of a smaller opaque cell with a
new bud site. Cells were labeled as shmoo if they had an irregular (often boomerang)
shape and large vacuoles. Many of our images contain a significant number of mating-
competent cells that are visibly distinct from both white and opaque morphologies.
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These cells are ellipsoidal, with a size in the upper quantile of white cells but below the
size of opaque cells. These properties are close in spirit to the gray morphology of Tao
and colleagues (15), although we did not grow C. albicans colonies under conditions that
specifically induce this morphology. To date, confirmation of the gray cell morphology
requires the use of specific molecular markers. However, given the distinctiveness and
ubiquity of these cells in our data, we decided to explicitly model this structure and use
the term “gray-like” to distinguish them from “true” gray cells according to Tao and
colleagues.

The diversity and complexity of filamentous cells necessitated the development of
an approach that uses several markers concomitantly to reliably identify them. Hyphae
are thin tube-shaped cells with a width of ;2 mm. Pseudohyphae are multicellular
entities which tend to be elongated and ellipsoidal. The minimum width is 2.8 mm. Our
markup scheme first bounds the entire hypha or pseudohypha. Since filamentous cells
are often long and irregular in shape, the bounding box almost always overlaps, or
completely subsumes, the bounding box of other objects. Since this overlap represents
a significant challenge for learning algorithms, we also labeled the location of the origi-
nal germ bud of each hypha or estimated the start cell of the pseudohypha; these
bounding boxes were labeled as H- and P-start, respectively. Compared to hypha/pseu-
dohypha bounding boxes, H- and P-start are much smaller and therefore disjoint from
other objects in the image (Fig. 1C to E). As is the case for the start sites, the septal
junctions in hyphae and pseudohyphae are visually distinct from one another. Only
pseudohyphae have constrictions at the mother-bud neck and subsequent septal junc-
tions. We placed bounding boxes at these junctions and labeled them as H- or P-junc-
tion. Cells for which we could not reach agreement on morphology were labeled as
unknown, and noncellular events in the images were labeled as artifacts.

TABLE 1 Summary of the Varasana learning set from Table S1

Usea Type(s) Genetic perturbation(s) Serumb Temp (°C)c Predominant morphology Significanced

A 64 SN148a No RM White NA
42 SN148a No RM Opaque NA
41 SN148a No RM White and opaque —
54 SN148a No RM Shmoo —
55 SN148a No RM Shmoo and white —
10 SC5314 No 30 White —
11 SC5314 20 37 White —
65 SC5314 No 30 Pseudohypha and hypha —
66 SC5314 No 37 Pseudohypha and hypha —
1, 5, 6 RHA1 GOF No 30 Pseudohypha and hypha; small —

B 4 RHA1 GOF 10 37 Pseudohypha —
3 RHA1 GOF 20 37 Pseudohypha —
34 UME6 null No 30 White —
27 BRG1 null No 30 White —
21 BRG1 null 20 37 Pseudohypha *
8 RHA1 null No 30 White —
9 RHA1 null 20 37 Pseudohypha/hypha; low branches *
7 RHA1 null, RHA GOF No 30 White —
2 RHA1 GOF, UME6 null No 30 **
46 RHA1 GOF, BRG1 null 20 37 **
16, 18, 19 RHA1 GOF, BCR1 null No 30 **
14 RHA1 GOF, BCR1 null No 37 **
13, 17, 20 RHA1 GOF, BCR1 null 20 37 —
15 RHA1 GOF, BCR1 null 10 37 —
36 RHA1 null, BRG1 null 10 30 **

aA, some images from this type of colony appeared in either the training or validation data sets; B, some images were used in the test set. All genetic perturbations were
performed in SC5314 cells.

b“No” indicates that only YPDmedium was used; values are the percent serum added to YPD.
cRM, room temperature.
dResults of applying the proportionality test to determine if there was a difference in performance between the validation and test set. *, P, 0.05; **, P, 0.01;—, P. 0.05.
In cases where a P value is provided for a type A colony, only images that were omitted from the training and validation data sets were used. NA, not applicable.
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We stress here that our strategy attempted to label each cell using only its visual
appearance and independently of other factors, including the predominant morphol-
ogy of cells in the image. For example, a colony grown under conditions which enrich
for white cells is still expected to harbor a small number of opaque cells (1 in 104); our
procedure would label a cell as opaque in this case. However, our labeling was likely
biased towards an assignment of white for a cell exhibiting both white and opaque
attributes. In some cases, a consensus was difficult to achieve across labelers.

Varasana: a cumulative curriculum-based C. albicans learning set for Candescence.
Learning sets are typically tripartitioned (Fig. 1G). The training set contains a sizeable
set of images which are presented to the neural network during training and used to
fit the model (i.e., update the weights of each arc in the neural network). The validation
set is typically a smaller sample of data which is used to generate an unbiased estima-
tion of the model fit during training. It provides a means to tune the hyperparameters
of the model. The test data set is used only once after all training is complete to assess
the final fit of the model. We partitioned the images referenced in Table 1 so that cells
from each morphology are assigned to the training and validation sets at a 7:3 ratio.
This procedure was confounded by the fact that there is significant variability in both
the number of cells per image and the composition of morphologies per image. From
the collection of 1,214 images, the training and validation data sets contain 216 and 94
images, respectively. These images in turn contain 4,880 and 1,958 objects, respec-
tively. The independent test contains the remaining 904 images.

FCOSs have several hyperparameters that affect the overall performance of the
system, including the learning rate (the amount weights are updated during gradient
descent), momentum (a parameter that stipulates how many previous steps can be
used to determine the direction of a weight update), decay (a regularization parame-
ter restraining the complexity of our model), epoch number (the number of times
the learning phase cycles through the complete training and validation sets), the IoU
(the intersection of union statistic, which controls how accurate the regression of the
bounding box must be), the threshold t (the lower bound for the probability an
object is assigned a class), and others (Fig. 1H). We performed a grid search across a
range of values for these parameters and measured convergence, model complexity,
and performance after each trial (see “Image annotation and development of the
learning set” and “Measures of system performance” in Materials and Methods).
Although the resultant classifiers had good performance for some morphologies
(e.g., F1 was ;78% for white, budding white, opaque, gray, and shmoo), several
classes remained poorly predicted (e.g., F1 was ;50% for pseudohypha- and hypha-
related classes), and budding classes were poorly distinguished from their parent
classes (e.g., F1 was ;60% for budding white, gray, and opaque).

The steep increase in difficulty between yeast white and the filamentous classes
highlighted the need for a more structured learning set. We opted for a curriculum
approach (57, 58), a well-established concept in psychology which has re-emerged in
the deep learning community. The fundamental idea is to structure the learning set so
that the neural network is exposed to concepts according to their difficulty, with the
easiest concepts presented first. Using the results from our original grid search to
judge easy and difficult objects, we redesigned our learning set into grades 1 through
6. Each grade was enriched for a specific subset of classes, although at least one exam-
ple of all classes was present at each grade. In general, grade 1 is enriched for yeast
white and budding white cells, grade 2 introduces opaque and budding opaque, grade
3 presents gray and budding gray, grade 4 focuses on the shmoo form, grade 5 focuses
on pseudohypha, and grade 6 concludes with hypha. Once an image appears at a cer-
tain grade, it appears in all subsequent grades. We hypothesize that this cumulative
strategy ensures that lessons learned early with populous morphologies such as yeast
white and opaque are retained when the complicated filamentous morphologies are
presented to the learner. To the best of our knowledge, this is the first use of a cumula-
tive approach with curriculum learning.
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A new grid search was conducted, but this time, the hyperparameters were allowed
to vary across the different grades. This grid search also considered different levels of
freezing in our four-layer FCOS. Freezing refers to the process of not allowing layers of
the neural network to change. For example, the most restrictive freezing regimen does
not allow any of the four layers to change in response to new examples, implying that
our classification is solely based on the original transferred ResNet-101. The most per-
missive freezing strategy allows all layers to be updated during training when pre-
sented with our images. Figure S1 breaks down the learning set by grade and classes
and provides the distribution of the number of cells per image.

Searching for classifiers of C. albicansmorphologies. The grid search, which required
;60 days of continuous computation on a 10-GPU (graphics processing unit) system, was
performed with the validation data set across the hyperparameter space. We judged per-
formance initially using the mean average precision (mAP) (59), a standard approach for
measuring the performance of multiobject/multiclass problems, across all trials with a final
value of 0.407 (see “Measures of system performance” in Materials and Methods). This best
classifier has a learning rate of 0.01, momentum of 0.97, and decay of 0.001 (Fig. 1H).
Analysis of the loss curves established that 1,000 epochs at each grade sufficed for conver-
gence for each of the three component loss curves (see “Measures of system performance”
in Materials and Methods; also, see Fig. S2). An initial performance assessment suggested
that an IoU of 0.5 and a t of 0.25 maximized the recall, precision, and F1, which were esti-
mated to be 82.4%, 66.5% and 73.7%, respectively (Table 2).

TABLE 2 Exploration of the performance of the FCOS in the grid search (IoU = 0.5)a

Parameter

Result for a t value of:

0.05 0.1 0.15 0.2 0.25b 0.3 0.35 0.4 0.5 0.6
Total number of ground truth objects 2,387 2,479 2,526 2,552 2,563 2,564 2,568 2,572 2,575 2,575

Blind spots
Number 252 270 281 289 301 327 344 373 440 557
Rate 0.106 0.109 0.111 0.113 0.117 0.127 0.134 0.145 0.171 0.22

Hallucinations
Number 482 445 414 384 358 342 325 306 272 218
Rate 0.202 0.18 0.164 0.15 0.14 0.133 0.127 0.119 0.106 0.09

Adjusted hallucinations
Number of true hallucinations 8 10 13 14 17
Number misclassified 22 26 30 33 37
Number correct 384 348 315 295 271

Classifications
Number of errors 389 387 384 378 352 332 319 299 261 215
Number correct 1,338 1,397 1,415 1,416 1,407 1,386 1,368 1,330 1,277 1,270
Rate 0.775 0.783 0.787 0.789 0.8 0.807 0.811

Adjusted classifications
Number of errors 406 404 382 365 356
Number correct 1,799 1,764 1,722 1,681 1,639
Adjusted rate 0.816 0.814 0.818 0.822 0.822

Sensitivity/recall 0.842 0.838 0.834 0.83 0.824 0.809 0.799 0.781 0.736 0.65
Adjusted sensitivity/recall 0.865 0.859 0.851 0.837 0.827
Precision 0.606 0.627 0.639 0.65 0.665 0.673 0.68 0.687 0.697 0.71
Adjusted precision 0.808 0.804 0.807 0.809 0.807
F1 0.704 0.717 0.724 0.729 0.737 0.735 0.735 0.731 0.716 0.68
Adjusted F1 0.838 0.834 0.832 0.826 0.821
aRelevant summary statistics for false negatives (blind spots), false-positive object predictions (hallucinations), and classifications. With a posterior analysis and correction of
the hallucinations, performance was recalculated and reported in the adjusted sensitivity row. True positives correspond to a correctly identified object that is also correctly
classified. In an FCOS, all pixels which are not part of a bounding box and which are not predicted to be part of a bounding box are true negatives. False positives are
hallucinations and incorrect classifications. False negatives are blind spots only.

bBoldface indicates estimates of performance for the optimal value of t = 0.25; underlining indicates the final performance after adjustments.
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Somewhat surprisingly, the performance of classifiers with more liberal freezing strat-
egies was better than that with strategies that froze layers. We hypothesize that the cumu-
lative nature of our learning set guaranteed that the network retained learned rules from
early grades without the need for freezing. Figure 2 depicts the ground truth labels (left)
and predicted objects and their classifications (right) across three typical images contain-
ing many of the morphologies. The images help to show that Candescence is able to cope
with overlapping objects in dense images.

Candescence rarely hallucinates (false-positive objects) but has blind spots
(missed objects). The performance of our classifier can be decomposed into its object
detection and object classification components. For object detection, false positives
refer to cases where Candescence predicts a bounding box in a location of the image
that does not have a ground truth bounding box. Using the 94 images of the validation
data set with an IoU of 0.5 and a range of thresholds for t , we manually examined all
false-positive predictions. These are depicted in Fig. S3 and S4 (358 false object detec-
tions for a t value of 0.25). It is difficult in some dark images (n = 13) to detect an
object. We confirm these as false-positive object detections. In approximately 30 cases,
there is in fact an object in the bounding box but the predicted classification is incor-
rect. Essentially, both the human labelers and Candescence have made mistakes of
missing the bounding box and incorrectly assigning class, respectively. In all remaining
315 cases, Candescence was correct to predict an object that the human labelers had
missed. After adjusting the performance measures by removing the effects of human
errors, the recall, precision, and F1 rose to 85.1%, 80.7% and 83.2%, respectively
(Table 2, values in bold and underlined; also, see “Measures of system performance” in
Materials and Methods). Figure 3A provides a small sample of correct and incorrect
false positives, or “hallucinations.”

Candescence, however, did miss several bounding boxes in the validation data set
(301 false negatives). Approximately one-quarter of such blind spots correspond to the
artifact class. Artifact is a heterogeneous class that was used to label all defects in the
microscopy images regardless of their individual visual qualities. As such, it is perhaps
understandable that Candescence did not learn to predict this class well, as there is no
consistent set of attributes. Approximately one-quarter of the blind spots are related
to objects labeled as yeast white in the ground truth data set (Table 3). We observed a
recurring pattern across these cases: often, the white cell was physically adjacent to a
second cell (Fig. 3B, panel i). Forensic investigation of the neural network suggests that
the softmax function of the FCOS distributes the probability between the yeast white
and budding yeast white uniformly. This caused the score for both categories to fall
below our chosen threshold (t ) of 0.25; hence, Candescence failed to identify a bound-
ing box in that location of the image. This also occurred between opaque and budding
opaque. In fact, more than one-third of the images in the validation data set had at
least one problematic prediction of this form.

Candescence failed to identify several white cells in dense images (Fig. 3B, panel ii)
and failed to label several germ tube cells as H-start. As well, P-junctions in pseudohy-
pha-enriched images were often hard to identify (;10% of all false negatives). A P-
junction looks like two adjacent cells with a bright region in the fluorescent image.
This pattern is not unlike countless other locations in the images that capture two adja-
cent cells, or budding cells. Our hope was that Candescence would learn to associate
the presence of P-junctions with the larger bounding box of the pseudohypha itself
along with the “nearby” P-start. There is some indication that Candescence has learned
this calculus, although there are many P-junctions per instance of pseudohypha and
they can be quite distal to the P-start. Last, some cells near the edges of the image
were overlooked, such as the example in Fig. 3B, panel iii. Overall, many of the false
negatives occur in dense, crowded images similar to Fig. 3B, panels ii and iii.

Candescence exhibits high classification accuracy. Here, we restricted attention
to objects which were correctly located in the images (n = 2,104) and investigated the
classification performance of Candescence. In total, there are 382 errors (accuracy of
81.8%) (Table 2). Figure 3C depicts the confusion matrix across the 15 classes in the
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FIG 2 Representative images of the ground truth in the Varasana validation set (left), each of which consists of
a bounding box around the object and a class label, and the predictions made by the FCOS Candescence
(right), which also have a score between 0 and 1 from the softmax layer of the FCOS representing the strength
of belief in the classification. (A) We found this image difficult to label, as the objects have both pseudohyphal
and hyphal properties. Nevertheless, Candescence recapitulated our classifications. Note that if an object is
identified as hypha, the junctions and start are also labeled as H; this is also true for a pseudohypha. This
suggests that Candescence was learning to classify not only on the image but also as a function of the
predicted labels of the same object. (B) Image containing a diverse collection of classes. Note that we labeled
gray-like only by size and “texture” (smaller but oblong like opaque and more gaunt than white cells). Overall,
these categories witnessed the highest number of classification errors. (C) Candescence predicted well even for
highly dense and diverse images such as this one.
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FIG 3 (A) Representative images chosen from the complete collection in Fig. S3 of all false-positive object identifications from Candescence. This set of
hallucinations is subdivided by the class label returned by Candescence. “X” indicates that we truly are not able to see an object (a true false positive/hallucination),

(Continued on next page)
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validation data set, with diagonal entries corresponding to correct classifications.
Comparing our labels to predictions, we observe pronounced confusion between opa-
que and gray-like with some 51 opaque cells classified as gray-like and 19 gray-like as
opaque. Significant but slightly reduced confusion exists between white and gray-like.
In fact, misclassifications between white, gray-like, and opaque account for almost
one-third of all classification errors. Although there is considerable confusion between
these three classes, we note that the statistical performance is still far better than ran-
dom, suggesting that our visual inspection and labeling were at least partially consist-
ent. A smaller degree of confusion exists with hypha and H-start. The softmax appears
to diffuse probabilities across H-start, white, and budding white for some bounding
boxes. This is perhaps another manifestation of the difficulties we observed with false
negatives/blind spots depicted in Fig. 3B.

Candescence retains its capacity to classify genetically perturbed C. albicans in
the test set. Our test set of 904 images serves as an independent measure of perform-
ance. Some images of SC5314 or SN148a strains without genetic modifications had been
left out of both the training and validation sets, but the strains were grown under the
same conditions needed to induce different morphologies. We compared Candescence
predictions to manual curation for images referenced in Table 1, but differences in per-
formance between the validation and test set were insignificant (comparison of propor-
tions [x 2 test]; see “Measures of system performance” in Materials and Methods).

The test also contains C. albicans colonies grown with a variety of conditions, prepa-
ration protocols, and genetic perturbations (Table 1; Table S1). The four perturbed
genes all have well-established and central roles in filamentation processes and the
regulation of morphology. Modifications of these genes generated cells that can differ
visually from wild-type morphologies, creating an interesting challenge to the ability
of Candescence to identify and classify cells.

Our panel includes a transformed SC5314 strain with a CRISPR/Cas9-based homozy-
gous deletion of UME6 (unscheduled meiotic gene expression), a Zn(II)2Cys6 (zinc cluster)
transcription factor that controls transition to true hyphae by maintaining expression of

FIG 3 Legend (Continued)
and “M” indicates that Candescence was indeed correct to predict a bounding box at that location (missed by the human annotators) but its subsequent
classification disagrees with our criteria. Subimages lacking an annotation indicate that Candescence correctly identified and classified the object, which represents a
human error. (B) Three partial images with false negatives (blind spots) labeled with red boxes. Unannotated cells in panels i to iii were correctly handled by
Candescence, and their bounding boxes have been removed for clarity. (i) Example of a recurrent problem where the probability from the softmax is distributed
over two or more labels (e.g., white and budding white), presumably because it has difficulty guessing whether they are only touching versus still attached. The
shared probability causes both to fall below our threshold t . (ii) Although Candescence performed well, blind spots arose presumably due to the dense packing of
cells. (iii) Our strategy during labeling was to leave cells that were partially outside the field of view unlabeled. Such edge effects cause some problems and are
often predicted as unknown. Last, bounding boxes for large filamentous C. albicans cells are sometimes missed, especially if other cells are within the vicinity. (C)
Confusion matrix for Candescence. Columns correspond to ground truth classifications, and rows correspond to Candescence predictions.

TABLE 3 Blind spots (t = 0.25) per class for the best-performing classifier

Class Number of blind spots
Total 301
Artifact 77
Yeast white 74
P-junction 29
Shmoo 19
Opaque 18
Gray-like 17
Unknown 16
Pseudohypha 13
Budding white 9
Hypha 7
H-junction 6
Budding opaque 4
H-start 4
Budding gray 2
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filament-specific genes in response to inducing conditions. Although cells lacking UME6
are able to form germ tubes, hyphal extension is limited (60). Our panel also includes
biofilm regulatory 1 (BRG1), encoding a transcription factor that recruits the histone deacety-
lase Hda1 to hypha-specific promoters and removes Nrg1 inhibition to promote filamenta-
tion. Filamentation is decreased in brg1D/brg1D cells (61). We did not detect a statistically
significant difference in performance of Candescence for both UME6-null and BRG1-null cells
under conditions inducing both the white morphology (Fig. S5A) and the pseudohyphal
morphology (Fig. S5B).

RHA1 (regulator of hyphal activity 1) encodes a zinc cluster transcription factor that
serves as a regulator of the Nrg1/Brg1 switch. Hyperactivation of Rha1 can trigger fila-
mentous growth in the absence of external signals. In the presence of serum, it can
bypass the need for Brg1 (62). Loss of Rha1 function leads to reduced ability to gener-
ate hyphal growth in the presence of external signatures. Loss of both Rha1 and Ume6
ablates filamentation completely. Although Rha1-null cells generate yeast white cells
with a standard appearance when grown at 30°C in YPD, they produce smallish pseu-
dohyphae with reduced branching when grown at 30°C with serum added to the YPD.
Candescence does successfully label pseudohyphal substructures, including P-start
and P-junction, but there is some increased confusion with hyphae, as exemplified in
Fig. S5C. A minor depreciation in accuracy was observed, and this was statistically sig-
nificant (P, 0.05; type 9) (Table 1).

We cultured RHA1 gain-of-function (GOF) mutants constructed using the zinc clus-
ter hyperactivation technique of Schillig and Morschhäuser (63) and observed that cells
grown at 30°C in YPD formed pseudohyphae that tended to look like the wild type
(Fig. S5D). Some of these images were used in the training and validation data sets,
and performance remained the same on the omitted test images. However, the per-
formance of Candescence was statistically worse in RHA1 GOF UME6-null cells.
Although these cells present with a small pseudohyphal morphology, the images tend
to contain multiple tightly packed clusters, which we hypothesize contributes to an
increase in the number of blind spots (Fig. S5E).

RHA1 GOF BRG1-null cells are morphologically distinct from wild-type hyphae and
pseudohyphae, comprising elongated chains without branching and with less pinching
at junctions (Fig. S5F). Here, Candescence most often labeled these cells as hyphae.
Interestingly, if an object was labeled as hypha, the junctions were labeled as H-junc-
tions and not P-junctions, although often the characteristic pinching of pseudohyphae
is clearly present.

Candescence again experienced a loss in performance with RHA1 GOF BCR1-null
cells grown at 30°C in YPD only. Bcr1 is a C2H2 zinc finger transcription factor which
regulates a/a biofilm formation and cell surface-associated genes. The homozygously
null variant exhibited decreased adhesion, biofilm formation, and cell size. There are
conflicting data regarding whether it promotes or inhibits filamentous growth; how-
ever, cells which do transit to a filamentous morphology appear abnormal (64, 65). In
the Varasana image set, this mutant strain generates cells that appear to branch simi-
larly to pseudohyphae, but the individual cells are yeast white or budding yeast in
appearance. They tend to form thick clusters in the image (Fig. S6A). The performance
decrease is highly significant (P , 0.001), with many cells in dense clumps labeled as
white or budding white. Candescence did, however, identify the location of the vast
majority of cells and often correctly labeled isolated objects as pseudohyphae. When
RHA1 GOF BCR1-null cells were grown at 37°C with serum added to the medium (types
13, 17, and 20) (Table 1), we observed large pseudohyphae, and Candescence classified
correctly at the same rate as the validation set (Fig. S6B).

Capturing the canonical forms of C. albicans morphologies: generative adver-
sarial networks.We observed considerable cell-to-cell morphological variability across
the images. Heterogeneity arises due to technical variations (e.g., light intensity and
focus), natural biological programs (e.g., cell cycle affecting size/shape), and transitions
between morphologies (e.g., growth of a hyphal cell from a germ tube). These sources
of heterogeneity complicate both the manual labeling procedure during construction

Capturing C. albicansMorphologies with Deep Learning Microbiology Spectrum

Month YYYY Volume XX Issue XX 10.1128/spectrum.01472-22 13

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

19
 A

ug
us

t 2
02

2 
by

 2
60

7:
fe

a8
:2

ce
4:

8c
00

:8
de

:3
11

e:
1d

66
:b

ae
2.

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.01472-22


of the learning set and the downstream ability of an FCOS to correctly assign morphol-
ogy. We studied this variability first using an unbiased, unsupervised variational
autoencoder (VAE) (66) approach (Fig. S8). We reasoned that if a collection of images is
sufficiently large, it will likely capture snapshots of cells in all technical (e.g., different
light intensities), developmental (e.g., across each step of the cell cycle), and morpho-
logical states (e.g., along the transition from germ tube to hypha). Using Varasana as a
first approximation to this large collection, our goal here was to build pseudo-time
models that capture the progression of these technical and biological variables. Our
approach is based on generative adversarial networks (GANs). Intuitively, this deep
learning technique rerepresents the images in a latent space in a manner that captures
these progressions (or “trajectories”). Then, computational techniques can search for
trajectories through the latent space that correspond to a specific effect of interest
(e.g., a specific transformation between two morphologies). This allows us to derive
continuous “movie-like” models of cells morphing along this trajectory.

GANs are trained using a game-theoretic adversarial approach that pits two deep
networks—the generator and the discriminator—against each other (67). The purpose
of the generator model is to create “fake” examples of C. albicans cells with different
morphologies. These fake images are created to deceive its adversary, the discrimina-
tor model. The generator is allowed to feed both fake and real images to the discrimi-
nator model, whose goal is to differentiate between the two. The generator is then
told which images the discriminator got right or wrong; this information is used to
update the generative model (which corresponds to updating parameters of the neural
network). This creates an “arms race” between the deep networks. After a sufficient
number of epochs, the generator will ideally produce fake images of C. albicans mor-
phologies which cannot be distinguished from true images by the discriminator. Our
GAN is based on the computationally accessible method from Liu and colleagues (68).

After training, we exploited the generator to explore trajectories in our latent space.
We started with two images representing the endpoints of a process of interest. For
example, the left endpoint might be a real image of a yeast white cell, while the right
endpoint might correspond to an opaque cell. We then used a process called inversion
(69) to find a representation of these two images in the latent space of the generator
(see “Generative adversarial networks” in Materials and Methods). Figure 4A depicts
examples of target images and their nearest neighbor in the latent space. Next, the sys-
tem finds a linear path between these two points in the latent space, so that the near-
est neighbor of the final “fake” image at s_8 is the real image at the right endpoint.
Last, the intermediate “fake” images are reconstructed from the latent space to provide
a visualization of the trajectory using the generator function.

Figure 4B (panel i) depicts the results of applying this procedure to find the yeast
white-to-opaque morphological switch. Interestingly, the system seems to arrive at a
decision point at s3. At this point, the trajectory could bifurcate toward budding white,
although in this case it continues toward opaque. As a comparison, when we asked for
a trajectory from yeast white to budding white (Fig. 4B, panel ii), the trajectory stays
true to the yeast form and does not appear to move toward the opaque morphology.
The hypothesized bud is perhaps somewhat disproportionately large compared to its
mother and larger than the bud of the real image. Figure 4B (panel iii) presents a tra-
jectory that starts with a budding opaque cell. Both cells appear to bud a second time
from s4 through s6. The progeny of the daughter cell (left) disappears from the trajec-
tory. Although imperfect, the system appears to have learned a reasonable model of
pseudohyphal development from relatively few (;100) images. Continuous movies for
each of these trajectories are available from our on-line resources.

Detecting deviations from standard C. albicans morphologies: anomaly detec-
tion with GANs. Microscopy is routinely used to judge whether a specific genetic or
environmental perturbation has led to an observable phenotype. This could manifest
as a visual change in the composition of cells in an image (e.g., an increase in opaque
cells versus control), a difference in the spatial distribution of cells in the image (e.g.,
clumping of cells), or a change in appearance of the cell (e.g., shortened hyphae or

Capturing C. albicansMorphologies with Deep Learning Microbiology Spectrum

Month YYYY Volume XX Issue XX 10.1128/spectrum.01472-22 14

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

19
 A

ug
us

t 2
02

2 
by

 2
60

7:
fe

a8
:2

ce
4:

8c
00

:8
de

:3
11

e:
1d

66
:b

ae
2.

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.01472-22


large vacuoles). Next, we built upon our GAN-based morphology models to address
the third issue, namely, a system capable of deciding whether the cells in an image
deviate significantly from the space of wild-type C. albicans morphologies. Our hope is
that the deep learner is more sensitive than “eyeballing” microscopy images when
manually attempting to investigate if an experimental strain is abnormal.

The algorithm starts by mapping a target bounding box (representing a single cell,
hypha, or pseudohypha) into the latent space of the GAN’s generator (see “Anomaly
detection” in Materials and Methods). The nearest neighbor in the latent space is
found; this corresponds to the object from the training and validation data set that is
visually most similar to the target. The distance between the target cell and nearest
neighbor is computed using a specialized similarity metric developed from the learned
perceptual image patch similarity (70) measure. The intuition is that distances between
a target with a normal morphology will have a nearest neighbor that is closer in the
latent space than a target with a very abnormal morphology.

Figure 5 presents an example of this test with a RHA1 GOF BCR1-null colony.
Candescence was first used to identify the objects and their morphology in the image,
and the anomaly score was computed for each such object in the latent space built
from the Varasana learning set. When we compared the distribution of anomaly scores
between all images from this mutant colony (type 13) and compared them against a
collection of “wild-type” pseudohyphal cells (type 65), we observed a statistical enrich-
ment of outliers with abnormal morphology (Kolmogorov-Smirnoff test, P , 0.01). We
generally did not observe differences at the low end of anomaly scores, as almost all
images from genetically perturbed colonies still contained many examples of cells with
normal morphology.

DISCUSSION

Candescence includes a multiobject detection algorithm capable of accurately clas-
sifying nine C. albicans morphologies. It is based on a fully convolutional one-stage
(FCOS) architecture which both locates objects and classifies them with high accuracy.

FIG 4 (A) For each pair of images, the left image is a synthesized image produced by our model, and the right image is the image found
from the real training data that is its nearest neighbor under the LPIPS metric. (B) Three separate trajectories. Here, the left- and rightmost
images correspond to real images from the training data. The sequence of images at points s1 to s7 are produced by a linear interpolation
between the real images in the generator’s latent space in the GAN.
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The system was trained with the Varasana learning set consisting of ;1,200 total
images. Using transfer learning, the starting point for training was ResNet-101, a net-
work capable of locating and classifying common household items and pets. It is possi-
ble that the image building blocks (textures, edges, and colors) encoded in ResNet-101
are not optimal for (DIC) microscopy. As our collection of C. albicans images grows, it
may be feasible to build a microscopy-specific analog of ResNet-101 and improve
performance.

Since a flat-structured learning set led to suboptimal performance, we developed a
six-grade curriculum learning set and ordered examples by increasing difficulty. To the
best of our knowledge, we are the first to use a cumulative approach with a curriculum
strategy where images appear at one grade and reappear in all subsequent grades. We
hypothesize that this approach removes the need for layered freezing strategies. This

FIG 5 (A) Example of anomaly detection using a RHA1 GOF BCR1-null colony (UID 230 of type 13).
The panels at the bottom are enlargements a series of bounding boxes predicted by Candescence
with their associated anomaly score. (B) Histogram comparing the distribution of anomaly scores
between all images of type 13 versus type 30, a collection of normal-appearing pseudohyphal and
hyphal cells. There is a small but statistically significant enrichment of cells from the RHA1 GOF BCR1-
null colony with elevated anomaly score differences (Kolmogorov-Smirnoff test, P , 0.01).
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is advantageous, since optimization of hyperparameters is computationally expensive
and the space of possible freezing strategies grows exponentially in the number of
grades and network layers.

Candescence exhibited very good performance. Given that an object was correctly
regressed in the image, it was assigned the correct class label with ;82% probability.
Misclassifications tended to occur between morphologies that overlap, as highlighted
by the VAE plots of Fig. S8. Confusion tended to exist between vegetative morpholo-
gies and their budding/mating forms (e.g., from white yeast to budding white). The dif-
ficulty here for Candescence was to judge cases where the daughter cell was large but
still attached versus detached but still physically adjacent to its mother. We hypothe-
size that a larger set of training examples will remove this confusion. Inclusion of time-
lapse images of specific biological processes would also improve performance.
Moreover, integration of the matched fluorescent images with the current grayscale
DIC image would perhaps provide the learning procedure with the necessary informa-
tion to judge whether separation has occurred. It would be straightforward to encode
the fluorescent image as an added dimension beyond the grayscale 800-by-800 input
currently used. We did not pursue this avenue in the first version due to complications
in the training procedure, since some fluorescent images were not available.

The construction of any learning set requires consistent labeling rules. In our set-
ting, there were visible differences in sizable subpopulations that stretch from yeast
white to opaque. This includes a large number of small rectangular “gaunt” cells we la-
beled as gray-like. Candescence was at times confused between the yeast white, gray-
like, and opaque morphologies, an expected observation given that there were many
images for which we were unable to form consensus as a group of humans. Absolute
assessment of true gray versus our gray-like was out of reach for this study, as we lack
the necessary molecular markers as per the original findings of Tao and colleagues
(15). Although false classifications are enriched between white, opaque, and gray-like,
the success rate is still very good, suggesting that this dichotomy does exist in the
images. If these cells had instead been randomly assigned the three class labels with-
out regard to physical appearance, it is highly unlikely that a classifier could learn to
distinguish them with statistically significant performance. Although the relationship
to the gray cells reported by Tian et al. (56) remains unsettled, it does suggest that
there is an interesting substructure across the vegetative forms that is perhaps not
captured by our current dichotomy; other cryptic morphologies could exist. These
physically distinct subcolonies could represent simply canonical mating-competent
forms at specific moments of their development or phenotype diversity that arises in
response to an environmental or communal cue (71). Building upon this primeval ver-
sion, Candescence may eventually allow the interrogation of community structure and
interaction.

Images of stained or fluorescent reporter molecules would help resolve issues of
cryptic morphologies and would extend the capacity of the system to classify using
subcellular features. This technique has been used successfully to explore changes to
S. cerevisiae in the presence of genetic perturbations (53), although baker’s yeast does
not have as large a range of morphologies as C. albicans.

Our system initially appeared to have significant challenges during the object
detection step. However, careful analysis of the false-positive detections suggests that
many such events are in fact not hallucinations (false positives) but “false false posi-
tives.” That is, they correspond to true events in the image files that we missed during
the manual annotation procedure. A large portion of these events correspond to either
subtle technical artifacts or small cells in crowded images.

Candescence appears to have some blind spots, missing cells that are annotated in
the ground truth data set. The trade-off between false negatives and positives is con-
trolled by underlying IoU and threshold t parameters. We observed that accurate
bounding boxes were indeed regressed for the majority of these false-negative
objects, but such objects required an abatement of either the IoU or t parameter
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before they were reported as positive predictions. Our forensic analysis of the neural
network suggests that this is due to confusion between, for example, yeast white and
yeast budding white; the probability is amortized over two or more classes and there-
fore drops below t .

Furthermore, with respect to false-negative objects, we hypothesize that the differ-
ences in size and shape between the morphologies (e.g., yeast white versus pseudohy-
pha) induce different distributions of IoU and t scores. Therefore, in images containing
diverse cell types, the single universal t is essentially too conservative for some mor-
phologies but too liberal for others. It is an interesting future challenge to modify
FCOS-based classifiers to adjust for this heterogeneity in a statistically sound manner.

We explored in the independent test set a range of genetically altered C. albicans
populations involving the genes RHA1, UME6, BCR1, and BGR1, which have established
roles controlling filamentation. The observed changes in classification accuracy are
consistent with the fact that these morphologies represent shifts away from wild-type
forms. The Candescence response to these perturbations was intuitive, and it largely
retained its performance.

Our work can be viewed as a revisitation and extension of the quantitative models
from 1989 introduced by Merson-Davies et al. (54, 55) using modern, powerful deep
encoders. Our intention is that the GAN models can be used to automatically detect
new morphologies that are perhaps subtly different from our current dichotomy.
Using tools for detecting anomalies via the generator’s latent space, we show how cells
displaying noncanonical morphological forms can be flagged and quantified. This
should find practical value in microscopy-based studies: the tool will provide the com-
munity with a central resource that houses not only all C. albicans images but also
unbiased models developed from those images that extended to noncanonical mor-
phologies. Future studies will benefit from the ability to compare their images across
this synthesized sum of knowledge. The technique should be straightforward to trans-
fer to other fungi.

We have shown that the deep learning-based approaches are able to recapitulate
the classification rules that are encoded by our choice of labeling strategy. It is unlikely
that our labeling strategy is correct, and other labelers with more or different expertise
might have chosen a different way to partition the learning set and assign labels to
individual examples. Varasana version 1.0 labels are certainly imperfect and open to
debate, but the classifier does function far beyond random guesses, suggesting that
our scheme has some value.

There is evidence that Candescence is able to “overcome” errors and inconsisten-
cies between labelers. This is a well-documented problem in image recognition
research, including computational pathology (72). We argue that the computational
techniques introduced to computational pathology are largely applicable to fungal
systems. For example, machine learning-based analysis of medical images has been
shown to be more sensitive than trained pathologists identifying small events and
complex patterns beyond perhaps human capacities (73). As Candescence evolves to
include stainings, fluorescent markers, and a greater spectrum of microscopy imaging
techniques, it may reveal cryptic cell or subcellular structure or community organiza-
tion. Computational approaches in imaging provide a means to combine different
modes of data and to provide downstream analyses that integrate this information in a
statistically sound manner (74–76). For C. albicans, this might entail the integration of
information concerning strain, growth conditions, and genetic challenges together
with images to better understand the composition and dynamics of colonies. Imaging
standards analogous to Digital Imaging and Communication (DICOM) (77) for microbial
systems, including imaging of host tissue, would enable better data sharing across the
fungal community and allow “hive analysis” (78).

Last and perhaps most importantly, a surprising degree of disagreement has been
observed (and quantified via Cohen’s k score) between expert pathologists when chal-
lenged with the same images (79). Our limited experience with C. albicans morphology
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suggests that there may be similar disagreements among experts in this field. Such dif-
ferences may hint at important alternative classification schemes. These differences
may be important as Candescence is extended into clinical samples where the pres-
ence of C. albicans and its morphology are considered concomitantly within their host
tissue. Our effort here represents an opportunity for the community to kernelize their
knowledge of the dynamics of morphologies in a quantitative objective manner.

MATERIALS ANDMETHODS
A fully convolutional one-stage object detector for morphology classification. There are funda-

mentally two computational problems underlying multiclass, multiobject detection. The first problem is
to detect the locations in an image where objects exist; this is a regression problem where we need to
determine the four coordinates corresponding to the corners of the bounding box. In our case, the num-
ber of objects per image ranges up to ;100 (Fig. S1), and objects may overlap in these images, espe-
cially with respect to the filamentous morphology. Most object detectors rely on predefined anchor
boxes. An anchor box is a rectangle that bounds an object in an image. Approaches that use anchor
boxes make educated guesses as to where objects might exist in the image in addition to guesses
regarding the size, aspect ratio, and number of such boxes. The fact that there are exponentially many
potential anchor boxes in any image makes this a computationally demanding exercise. Moreover, there
are many parameters (size, aspect ratio, and number of boxes) that require optimization and redesign
on new data sets. The second problem is then to correctly label each object by its class (13 classes repre-
senting 9 morphologies, an unknown class, and an artifacts class).

Here, we opted to use a fully convolutional one-stage object detector (FCOS) for classifying C. albi-
cans morphology (56). FCOSs represent an anchor box-free reformulation of object detection. This is
achieved by predicting, for each point in each feature map, the offset position to the top left and bot-
tom right coordinates of a bounding box. Five feature maps are produced, and each such map is limited
to predicting bounding boxes of a predetermined size. For example, the first feature map predicts
bounding boxes with maximum area of 30 by 30 pixels, while the final feature map is used to predict
bounding boxes with maximum area of 128 by 128 pixels. A standard convolutional neural network is
used with a softmax head for the classification component. We developed Candescence on top of the
open-source implementation of FCOS provided by the machine vision platform MMDetection (80)
(Fig. 1F).

Strains and media. Images of yeast white, opaque, and shmoo morphologies were acquired from C.
albicans SN148a cells grown on YPD agar (1% yeast extract, 2% Bacto peptone, 2% D-glucose, 2% agar,
and 50 mg/mL uridine). Opaque switching was induced by growing cells on SC glucosamine medium
(0.67% yeast nitrogen base lacking amino acids, 0.15% complete amino acid mixture, 2% agar, 1.25% N-
acetylglucosamine [GlcNAc], 100 mg/mL uridine). We used 5 mg/mL phloxine B to stain opaque colonies.
The shmoo morphology was induced by treating opaque cells with 10 mg/mL a-pheromone for 24 h in
room temperature shaking at 220 rpm.

To induce filamentation in wild-type SC5314, two colonies of cells was grown separately in 5 mL of
glucose-phosphate-proline (GPP) medium (81) (2.5 mM KH2PO4 [pH 6.5], 10.2 mM L-proline, 2.6 mM N-
acetyl-D-glucosamine, 3 mM MgSO4�7H2O, 20% glucose) for 12 to 16 h in a 30 and 37°C shaker incubator.
The next day, 1 mL of cells from each colony was washed twice with 1 mL 1� phosphate-buffered saline
(PBS). Different genetic variants of the SC5314 strain were also used to generate colonies enriched for fil-
amentous morphologies. After growth, cells were washed with 1� PBS and diluted to different OD600

values in fresh liquid spider medium, YPD, or combinations of YPD and fetal bovine serum with or with-
out centrifugation as per Table S1, which provides a complete list of strains, conditions, and protocols.

Microscopy. C. albicans colonies were mounted on slides and stained with a concentration of 2 mg/
mL calcofluor white for 20 min before imaging. Images of C. albicans were captured using a Leica
DM6000 upright microscope equipped with 100� (numerical aperture [NA], 1.3), 60� (NA, 1.4), and 40�
(NA, 0.75) lenses and a Hamamatsu Orca ER camera. For DIC images, samples were captured using DIC
optics and the built-in transmitted illuminator of the microscope. For cells labeled with fluorescent
probes, samples were illuminated with a 100-W mercury bulb (Osram) and passed through filter cubes
optimized for illumination of calcofluor white-labeled samples (excitation wavelength, 377/50 nm; emis-
sion wavelength, 447/60). We used the fluorescent images during the manual labeling procedure to
help decide on the best morphological assignment. This was particularly relevant to distinguish between
white/opaque/gray-like and their budding variants, and also between junction types for the filamentous
morphologies, as bud scars are clearly visible. However, the fluorescent images were not submitted to
the FCOS (or other deep learning tool) during training. They are available as part of the Varasana learn-
ing set.

Image annotation and development of the learning set. In general, all computations were done
using Python version 3.7 and R version 3.6.3. Our learning set was prepared using Labelbox (https://
labelbox.com), software that facilitates the distributed annotation of image files. As a group, we labeled
images following the guidelines from Sudbery et al. (20), Whiteway and Bachewich (11), Noble et al. (22),
and Tao et al. (15). Labelbox assigns images in a manner that guarantees that the same image is scored
by multiple labelers. One labeler (M.T.H.) modified assignments after the first round of labeling to ensure
as much consistency as possible across the labelers. A second round of quality control was performed
by M.T.H. after the grid search was completed and our best classifier identified. Here, all false positives
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and negatives were examined, and a decision was made as to whether the instance was a labeling mis-
take or a mistake made by the classifier.

Measures of system performance. In the expressions below, TP, TN, FP, and FN denote true posi-
tives, true negatives, false positives, and false negatives, respectively. Recall (also called sensitivity) meas-
ures the rate of false negatives: TP/(TP 1 FN). Precision measures the rate of false positives: TP/(TP 1
FP). The F1 measure is convenient, as it combines recall and precision into a single summary statistic:
{TP/[TP 1 1/2(FP 1 FN)]}1 2/(recall21 1 precision21).

In multiobject/multiclass problems, there are two fundamental parameters. The first parameter is
related to the object detection component of the FCOS and is termed the IoU value, calculated as area
of intersection/area of union. Throughout this work, we used a threshold of 0.5 for the IoU. The IoU con-
trols how closely the predicted bounding box must overlap the ground truth bounding box to be con-
sidered a positive. More stringent IoUs tend to decrease the recall of the system significantly, with recall
dropping due to a rapid increase in the number of false negatives (82).

The second parameter is related to the classification component of the FCOS. Here, t represents the
minimum value from the softmax of the classification head of the FCOS that must be exceeded if an
object is to be assigned a class. More precisely, the object is assigned a class if and only if (i) the class
has the highest score and (ii) the score exceeds t .

The dual nature of object detection/object classification problems requires refinement of these funda-
mental concepts. We say that an object in an image is a TP if and only if the bounding box is predicted cor-
rectly (i.e., the IoU is .0.5) and the object is then classified correctly: k = argmaxclass c score(s , c), where k

is the true class of the target s and score(s ,c). t .
The concept of a true negative in this setting is tricky, since any pixel which does not belong to a

bounding box in an image is in essence a TN. An object is an FP if and only if either (i) the predicted
bounding box does not sufficiently overlap a ground truth bounding box or (ii) the predicted bounding
box does sufficiently overlap a ground truth bounding box but the classification is incorrect. Type 1 is
termed a hallucination; type 2 is a misclassification. An object is an FN if and only if we fail to predict a
bounding box with sufficient overlap a ground truth bounding box. We term these FNs blind spots.

The mean average precision (mAP) is the standard and preferred approach for measuring the per-
formance of multiobject/multiclass problems (59). The mAP computes the average of the average preci-
sion over t . Here, the average precision corresponds to the area under the precision recall curve induce
by a specific threshold for the IoU and varying t . The maximum value for the mAP is 1.

Within an FCOS, total loss is computed as the sum of three individual losses: centerness, bounding
box, and classification loss (Fig. S2). The concept of centerness loss is specific to the FCOS and represents
a mechanism to avoid the identification of multiple, spurious bounding boxes for a single object. It con-
verges to a value of 0.57 (56, 83). Bounding box loss measures disagreement between the ground truth
location of bounding boxes with the regression produced by the deep learner. Finally, classification loss
measures how well correctly identified objects are assigned classes.

We searched the hyperparameter space defined by the cross-product of different settings for the
learning rate, momentum, decay, number of epochs per grade, IoU, threshold t , and various freezing
rates (Fig. 1H; boldface font denotes the choice of parameters for the final FCOS). Throughout these
experiments, the 800-by-800 input images were subjected to augmentation (random multiscale flip-
ping). Other parameters included 1,000 warmup iterations, a warmup ratio of 1/3, and an SGD optimizer
with grad clipping. The mAP and three loss functions described above were used to initially judge the
quality of the classifier.

When investigating differences in performance of a classifier between the test and validation sets,
we manually curated a subset of test images for each entry in Table 1 in a manner to ensure that at least
100 cells were labeled (with the exception of the first two entries of Table 1, where there were too few
cells). Then we built a contingency table where rows correspond to correct and incorrect predictions
and columns correspond to the test and validation data set. A x 2 test was used with the null hypothesis
of no difference between the overall number of correct predictions in the test and validation sets.

Generative adversarial networks. We followed the approach of Liu et al. (68) to build uncondi-
tional GAN images. This approach requires computational resources that are accessible to most labs and
requires few training samples, a feature important for our setting here. The model is particularly amena-
ble to the disentanglement procedures described below. Figure S7A and B depict the structure of the
generator and discriminator, respectively. We extended the Pytorch-based code available from the
authors (84). The input used for training corresponds to the ground truth bounding boxes of the training
and validation data sets, reshaped as a 128-by-128 image. Here, we used a shift predictor and deforma-
tor learning rate of 0.0001, with 2,000 steps in batches with a size of 4.

We followed the framework of Creswell and Bharath (69) to build trajectories between two (real) tar-
get images. Here, however, we opted to use the learned perceptual image patch similarity (LPIPS) metric
as the loss function (70). The core idea is to find both “real” target images in the generator’s latent space.
This requires a so-called inversion, which we perform using the algorithm INFER of Creswell and Bharath
(69). Then, we used linear interpolation between these two points in the latent space and reconstructed
visual representations at user-defined points along this path.

Anomaly detection. Anomaly detection proceeds using the framework from Schlegl et al. (85) but
replacing their residual and discriminator loss with the LPIPS metric for estimating the similarity
between two images (70). Our approach proceeds as follows. (i) Each object in an image file is bounded
manually, or Candescence is used to automatically regress bounding boxes for the objects in the target
image file. (ii) For each target object (that is, for each bounding box or patch) T, we found its optimal
inversion z in the latent space of the generator G using the INFER(T,G) algorithm of Creswell and Bharath
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(69) modified to use the LPIPS similarity metric. Here, G(z) is a synthetic image. (iii) Next, we found the
nearest real neighbor d of G(z) across all images d in the training set D under the LPIPS metric. (iv) The
anomaly score is then defined as follows: A(TjG,D) = L[G(z),T]1mind [D L[G(z),d], where D is the set of training
images and L is the LPIPS function between two images.

With respect to the second part of item 1, we remark that the performance of Candescence was not
severely reduced when given an image with noncanonical morphologies, and in this setting, the classifi-
cation returned by the FCOS is not used. Therefore, this automated approach should suffice in most sce-
narios, unless the change in morphology is very large. However, when the change in morphology is
obvious, we will not need a sensitive algorithm to detect it.

Data availability. The Varasana data set, code, trained models, supplemental movies, and a Jupyter
notebook to run Candescence are available from the Open Science Framework at https://osf.io/qdxbp.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, SVG file, 0.5 MB.
SUPPLEMENTAL FILE 2, SVG file, 0.5 MB.
SUPPLEMENTAL FILE 3, SVG file, 0.5 MB.
SUPPLEMENTAL FILE 4, SVG file, 0.3 MB.
SUPPLEMENTAL FILE 5, SVG file, 7.5 MB.
SUPPLEMENTAL FILE 6, SVG file, 2.5 MB.
SUPPLEMENTAL FILE 7, SVG file, 0.1 MB.
SUPPLEMENTAL FILE 8, SVG file, 2.2 MB.
SUPPLEMENTAL FILE 9, XLSX file, 0.2 MB.
SUPPLEMENTAL FILE 10, PDF file, 0.1 MB.
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