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Abstract   
  

We  present  deep  learning-based  approaches  for  exploring  the  complex  array  of  morphologies                         
exhibited  by  the  opportunistic  human  pathogen   C.  albicans .  Our  system  entitled  Candescence                         
automatically  detects   C.  albicans  cells  from  Differential  Image  Contrast  microscopy,  and                       
labels  each  detected  cell  with  one  of  nine  vegetative,  mating-competent  or  filamentous                         
morphologies.   The  software  is  based  upon  a   fully  convolutional  one-stage  object  detector   and                           
exploits  a  novel  cumulative  curriculum-based  learning  strategy  that  stratifies  our  images  by                         
difficulty  from  simple  vegetative  forms  to  more  complex  filamentous  architectures.                     
Candescence  achieves  very  good  performance  on  this  difficult  learning  set  which  has                         
substantial  intermixing  between  the  predicted  classes.  To  capture  the  essence  of  each   C.                           
albicans  morphology,  we  develop  models  using  generative  adversarial  networks  and  identify                       
subcomponents  of  the  latent  space  which  control  technical  variables,  developmental                     
trajectories  or  morphological  switches.  We  envision  Candescence  as  a  community  meeting                       
point   for   quantitative   explorations   of    C.   albicans    morphology.     
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Introduction   
  

Fungal  infections  represent  an  urgent  and  significant  threat  to  human  health  affecting  1.2                           
billion  people  yearly 1–3 .  They  kill  approximately  the  same  number  of  people  (1.6  million)  as                             
malaria 4 ,  and  are  implicated  in  cancer  progression 5 .   Candida  albicans   is  one  of  the  most                             
important  of  these  human  pathogens 6  and  carries  a  significant  socio-economic  burden 2,7–9 .                       
As  such,  it  has  become  an  important  system  for  studying  fungal  pathogenicity.   C.  albicans  is                               
morphologically  classified  as  a  pleomorphic  yeast-like  fungus  and  systematically  classified                     
as  an  ascomycete.  It  is  well  adapted  to  its  role  as  an  opportunistic  pathogen  with  a  diverse                                   
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range  of  morphologies  that  predominate  in  different  niches.  The  morphologies  can  be  broadly                           
partitioned  into  vegetative  and  mating-competent  forms 10,11 .  We  provide  a  brief  review  of  the                           
morphologies   central   to   our   effort   here   ( Figure   1A-E ).   
Vegetative  forms  differ  in  cell  and  colony  morphologies,  their  molecular  state  and  their                           
behaviors  as  infectious  agents.  These  yeast  forms  are  commonly  found  on  mucosal  and  skin                             
surfaces  where  they  grow  benignly  and  are  tolerated  by  the  host  immune  system 12  .  The white                                 
form  has  a  round  unicellular  morphology  ( Figure  1A,B ).  If  engulfed  by  macrophages,  the  white                             
yeast  will  switch  to  the  hyphae  morphology  as  a  means  of  immune  escape 13 .  The   opaque  form                                 
is  larger  and  has  a  more  rectangular  shape  than  white  cells  ( Figure  1A,B ).   C.  albicans  can                                 
mate  only  when  both  cells  are  in  the  opaque  morphology 14 .  Switching  between  the  two                             
morphologies  is  rare  (~10 4  cell  divisions),  stochastic,  and  strongly  influenced  by                       
environmental  cues  and  homozygosity  of  mating  type.  White  cells  are  believed  to  be  better                             
suited  to  internal  infections,  while  opaque  cells  thrive  in  skin  infections 15 .  The   gray  morphology                             
is  an  alternative,  stable  form  between  the  white  and  opaque  morphologies  ( Figure  1A,B ).  Gray                             
cells   are   “shiny”   and   small   like   white   cells   yet   elongated   like   opaque   cells   in   solid   media 16 .     
C.  albicans  can  also  assume   mating-competent  morphologies  including  the  budding  yeast                       
white  cell  ( Figure  1B)  and  two  distinct   filamentous  forms  ( Figure  1C-E ).  The   hyphal  form  is                               
characterized  by  long  tube-like  filaments  without  constrictions  at  the  site  of  septation.  Hyphae                           
are  able  to  invade  epithelial  and  endothelial  cells,  and  damage  host  tissue  in  mucosal                             
infections  in  order  to  gain  access  to  the  bloodstream 17 .  The  yeast  to  hyphal  switch  is  initiated                                 
under  a  variety  of  environmental  conditions  including  presence  of  serum,  neutral  pH,  5%  CO2,                             
N-acetyl-D-glucosamine,  amongst  others 18 .  In  the  first  cell  cycle,  the  germ  tube  morphology  is                           
observed,  manifesting  as  tube  projecting  from  the  round  yeast  cell  ( Figure  1D ).  The  second                             
filamentous  growth  form,   pseudohyphae,  are  significantly  different  from  hyphae  at  the                       
molecular  level  in  terms  of  cellular  regulation  and  growth 19–21  but  also  in  terms  of  their                               
phenotypic  presentation.  Pseudohyphae  tend  to  have  more  branch  points,  because                     
mother-daughter  attachments  are  more  easily  disrupted  than  in  hyphae  ( Figure  1E ).  Unlike                         
hyphae,  p seudohyphal  cells  exhibit  synchronous  cell  divisions  and  septation  at  the                       
mother-bud  neck 22 .  Weak  filament-inducing  conditions  (e.g.  high-phosphate  medium)  favour  a                     
pseudohyphae  over  a  hyphae  morphology.  Like  hyphal  cells,  they  interact  with  the  mouth,                           
vagina  and  bloodstream  of  the  host.   The   shmoo  morphology  arises  from  opaque  cells  which                             
have  formed  a  projection  produced  by  the  a  and  ɑ  types  when  preparing  to  mate,  leading  to                                   
tetraploid   zygote   formation.     
Some  less  frequent   C.  albicans  morphologies  are  not  considered  in  our  effort  here.  This                             
includes   chlamydospores  which  are  formed  at  the  end  of  pseudohyphae  and  hyphae  filaments                           
(suspensor  cells).  They  have  a  thicker  cell  wall  and  are  larger  than  blastospores.  The  final                               
chlamydospore  has  an  elaborate  septin-derived  substructure.  We  also  do  not  consider                        
Gastrointestinally-IndUced  Transition  (GUT)  cells,  which  are  derived  from  the  white                     
morphology  when  passaging  through  the  gut  of  the  host.  The  morphology  confers  survival  in                             
the  digestive  tract  via  metabolic  adaptations  to  available  nutrients  in  this  environment 23 .   The                           
trimera  morphology  is  sometimes  observed  after  unequal  chromosome  segregation  under,  for                       
example,  stress  from  antifungal  exposure.   Finally,  we  do  not  consider  the   goliath  morphology                           
which  arises  in  response  to  mammalian  host  nutritional  immunity  strategies  including  zinc                         
sequestration 24 .  When   C.  albicans  is  unable  to  scavenge  host  zinc  during  endothelial  invasion,                           
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the  fungus  transforms  to  a  giant  yeast  cell  morphology  with  advanced  adhesion,  a  property                             
shared   with   the   hyphal   morphology.   
There  have  been  several  earlier  efforts  in  fungal  image  analysis 25  including  approaches  to                           
computationally  differentiate  between  types  of  fungi  and  allergenic  fungal  spores 26 ,  and  to                         
characterize  the  macro-structure  of  mycelium  or  filamentous  growth 27–34 .   Tleis  and  Verbeek                       
experimented  with  a  suite  of  machine  learning  techniques  to  segment   S.  cerevisiae   cells  and                             
measured  a  range  of  features  and  textures  from  two  channel  images  acquired  by  a  laser                               
scanning  confocal  microscope 35 .  Wang  et  al.  provided  a  segmentation  method  with  an                         
efficient  edge-tracing  algorithm  for  bright-field  images  of  fission  yeast,  which  have  a                         
consistent  oblong  morphology 36 .  Another  effort  employed  microfluidics  to  capture  individual                     
S.  cerevisiae  cells;  non-fluorescent  images  were  used  to  train  a  classifier  of  cell  cycle  state  for                                 
each   cell 37 .     
Deep  learning  was  first  applied  to  biomedical  imaging  in  2012  with  the  approach  from  Ciresan                               
and  colleagues 38  to  automatically  segment  neuronal  structures  depicted  in  stacks  of  electron                         
microscopy  images.  Shortly  thereafter,  Rosenberger  et  al. 39  developed  a  generic  convolution                       
network  (termed  U-net)  for  image  segmentation  that  has  since  been  used  in  many                           
biomedical-related  image  recognition  challenges.  Our  work  here  builds  upon  a  different  but                         
well-established  deep  learning  architecture  entitled  Res-Net 40 .  These  and  other  deep                     
learning-based  approaches  have  been  extended  to  cell  counting,  detection  and  morphology.                       
To   date,   these   methods   have   been   primarily   used   in   the   context   of   human   tissue   analyses 41–44 .     
Deep  learning  has  opened  up  many  new  avenues  of  investigation  in  microscopy  through  the                             
introduction  of  new  techniques  for  image  transformation,  object  localization  in  super                       
resolution  computing,  and  cross-modality  imaging 45 .  One  challenge  is  to  establish  a  model  of                           
the  morphology  of  a  single  cell,  and  then  detect  when  cellular  perturbagens  change  that                             
morphology 46–48 .  Approaches  use  both  generative  adversarial  training 49  and  variational                   
autoencoder-based  methods 50 .  Recently,  a  very  powerful  form  of  deep  learning-based  image                       
analysis  entitled  Faster  Region-based  Convolutional  Neural  Network  (Faster  R-CNN) 51  was                     
applied  to  images  of  blood  smears  from  individuals  infected  with  malaria 52 .  The  goal  was  to                               
identify   different   human   cell   types   concomitantly   with   the   protist    Plasmodium   vivax    in   images.   
With  respect  to  fungi,  there  have  been  significant  advances  to  integrate  robotic-controlled                         
hardware  with  high-content  image  analysis  tools  to  rapidly  screen  and  analyze  hundreds  of                           
thousands  of  images  of   S.  cerevisiae  to,  for  example,  identify  essential  genes  and  genetic                             
interactions 53,54 .  These  works  were  the  first  to  bring  large-scale  image  analysis  at  t he                           
subcellular  level;  the  first  deep  learning  approach  (DeepLoc)  expanded  on  this  subcellular                         
microscopy   work   in    S.   cerevisiae 55 .     
Our  effort  investigates  two  novel  inter-related  image  recognition  challenges  with   C.  albicans                         
using  methodology  from  deep  learning.  We  first  develop  a  system  that  can  automatically                           
detect   C.  albicans  cells  from  microscopy  images  and  label  each  detected  object  with  its                             
morphology.  The  model  is  trained  using  our  large  compendium  of  Differential  Interference                         
Contrast  (DIC)  images  containing  individual   C.  albicans  cells  in  different  morphological  states.                         
We  treat  this  problem  as  a  multi-class,  multi-object  object  detection  problem  where  15  distinct                             
classes  are  used  to  describe  nine  morphologies.  Some  images  contain  as  many  as  one                             
hundred  tightly  packed  cells.  Our  method  builds  upon  a   fully  convolutional  one-stage  object                           
detector  (FCOS) 56  and  a  novel  cumulative  curriculum-based  learning  strategy  that  stratifies                       
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images  by  difficulty.  Then,  building  upon  our  ability  to  accurately  identify  and  classify  cells,  we                               
develop  a  deep  learning-based  model  that  captures  the  essence  of  each   C.  albicans                           
morphology.  These  models,  which  are  based  upon  generative  adversarial  networks  (GANs),                       
can  be  interrogated  to  identify  components  of  its  latent  space  that  control  various  features  of                               
the  images.  This  includes  technical  variables  but  also  biologically-relevant  processes  such  as                         
developmental  trajectories  or  transitions  between  morphologies.  These  models  provide  the                     
first  dynamic  and  continuous  approach  to  capturing  the  essence  of  the  different                         
morphological  states  and  transitions  between  them.  We  show  how  these  models  can  be  used                             
to  automatically  identify  subtle  changes  from  wild-type  phenotype  when  given  images  from                         
genetically   perturbed    C.   albicans    populations.     
Results   

A   deep   learning   approach   to   recognizing    C.   albicans    morphologies   

Our  first  goal  is  to  develop  a  fully  automated  tool  that  identifies  the  location  and  morphology                                 
of  cells  from  microscopy  images  of   C.  albicans  populations.  We  cast  this  challenge  as  a                               
multi-object,  multi-class  detection  problem:  (i)  the  system  identifies  the  location  of  all   C.                           
albicans   cells  in  each  image,  and  then  (ii)  predicts  the  morphology  of  each  hypothesized  cell.                               
Images  may  contain  an  arbitrary  number  of  individual  objects  (cells  or  artifacts).  Our  system                             
classifies  nine  of  the  12  reported   C.  albicans  morphologies:  yeast  white,  budding  yeast,                           
opaque,  budding  opaque,  shmoo,  gray-like,  budding  gray-like,  hyphae,  and  pseudohyphae.                     
Each  detected  object  is  assigned  the  morphology  with  the  highest  likelihood,  provided  the                           
probability   of   the   prediction   exceeds   a   user-defined   threshold    . τ  

Our  software  (entitled   Candescence )  is  based  on  what  is  termed  a  fully-convolutional                         
one-stage  object  detector  (FCOS) 56 ,  a  new  approach  that  has  several  benefits  over  other  deep                             
learning  algorithms  for  multi-object,  multi-class  problems  ( Figure  1F ).  One  of  its  key                         
advantages  resides  from  how  it  flags  areas  of  an  image  likely  to  contain  an  object.  Rather                                 
than  requiring  many  parameters,  which  collectively  control  the  size,  location  and  total  number                           
of  bounding  boxes,  the  FCOS  considers  each  individual  pixel  in  an  image  as  potentially                             
centering  an  object,  abating  the  need  to  optimize  many  hyperparameters  simultaneously.                       
FCOSs  are  able  to  handle  objects  of  variable  size,  an  important  property  given  the  difference                               
between,   for   example,   yeast   white   and   hyphal   cells.     

FCOSs  can  make  use  of  transfer  learning,   a  technique  where  a  neural  network  is  first  trained  in                                   
a  distinct  but  similar  context  compared  to  the  problem  at  hand.  In  our  case,   we  begin  with  a                                     
FCOS  trained  with  the  ResNet-101  dataset,  a  convolutional  neural  network  trained  on  more                           
than  a  million  images  partitioned  into  1000  classes  of  common  household  objects  and                           
animals 40 .  Intuitively,  transfer  learning  guarantees  that  our  neural  network  comes  equipped                       
with  the  basic  circuitry  to  recognize  simple  shapes,  shades,  edges  and  textures.  Candescence                           
allows  this  set  of  rich  feature  representations  to  be  retrained  for  our  morphologies,  requiring                             
only  a  tractable  number  of   C.  albicans  images.   Methods  1  describes  the  architecture  and                             
technical   parameters   of   the   FCOS.   

An   image   compendium   of    C.   albicans    morphologies     

Supervised  machine  learning  problems  including  this  image  recognition  problem  exploit  a                       
learning  set,  which  is  a  curated  collection  of  images  where  bounding  boxes  have  been  drawn                               
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and  labelled  for  every  object.  We  constructed  such  a  learning  set  by  growing   C.  albicans                               
SC5314  or  SN148A  colonies  under  conditions  necessary  to  induce  each  of  the  nine                           
morphologies  ( Table  1A,  Methods  2 ):  yeast  white,  budding  white,  opaque,  budding  opaque,                         
gray-like,  budding  gray-like,  shmoo,  hyphae,  and  pseudohyphae.  The  number  of  observed                       
goliath,  zygote,  chlamydospores  and  trimera  cells  was  too  small  for  computational  training                         
and  were  excluded  from  the  analysis.  This  first  version  of  our  software  also  did  not  consider                                 
C.  albican s  GUT  cells  as  they  require  special  culturing  conditions.  Each  population  was                           
stained  with  calcofluor  white  and  prepared  for  DIC  and  fluorescent  microscopy  at  various                           
magnifications  (40x-100x;   Methods  3 ).  We  also  cultured  and  imaged   C.  albicans  colonies  that                           
had  specific  genetic  perturbations  known  to  affect  morphology.  In  total,  1214  images  were                           
generated   ( Supplemental   Table   1 ).   
In  each  of  the  resultant  DIC  images,  a  bounding  box  was  manually  drawn  around  each   C.                                 
albicans  cell  and  labelled  with  its  morphological  class  following  the  guidelines  of  Sudbery  et                             
al. 21 ,  Whiteway  and  Bachewich 11 ,  Tao  et  al. 16  and  Noble  et  al. 23  ( Methods  4 ).  More  specifically,                               
cells  with  a  round-to-oval  morphology  (4.9μm  ⨉  6.8μm)  were  labelled   white  unless  they  were                             
attached  to  a  second  smaller  white  cell  with  concomitant  evidence  of  a  bud  site  (as  sometime                                 
assisted  by  manual  inspection  of  the  calcofluor  white  signal  in  the  matched  fluorescent                           
image);  in  this  case  they  were  labelled   budding  white   ( Figure  1A,B ).  Ellipsoidal  cells                           
approximately  twice  the  size  of  white  cells  (9.5μm  ⨉  11.8μm)  were  labelled   opaque .  Like  white                               
cells,  they  were  labelled   budding  opaque  if  there  was  evidence  of  a  smaller  opaque  cell  with  a                                   
new  bud  site.  Cells  were  labelled   shmoo  if  they  had  an  irregular  (often  boomerang)  shape  and                                 
large  vacuoles.  Many  of  our  images  contain  a  significant  number  of  vegetative-like  cells  that                             
are  visibly  distinct  from  both  white  and  opaque  morphologies.  These  cells  are  ellipsoidal  in                             
shape,  with  a  size  in  the  upper  quantile  of  white  cells,  but  below  the  size  of  opaque  cells.                                     
These  properties  are  close  in  spirit  to  the   gray  morphology  of  Tao  and  colleagues 16 ,  although                               
we  did  not  grow   C.  albicans   colonies  under  conditions  that  specifically  induce  this                           
morphology.  To  date,  confirmation  of  the  gray  cell  morphology  requires  the  use  of  specific                             
molecular  markers.  However,  given  the  distinctiveness  and  ubiquitousness  of  these  cells  in                         
our   data,   we   decided   to   explicitly   model   this   structure   and   use   the   term    gray-like .     

The  diversity  and  complexity  of  filamentous  cells  necessitated  the  development  of  an                         
approach  that  uses  several  markers  concomitantly  to  reliably  identify  them.  Hyphae  are  thin                           
tube-shaped  cells  with  a  width  of  ~2μm.  Pseudohyphae  are  multicellular  entities  which  tend                           
to  be  elongated  and  ellipsoidal  in  structure.  The  minimum  width  is  2.8μm.  Our  markup                             
scheme  first  bounds  the  entire  hyphae  or  pseudohyphae.  Since  filamentous  cells  are  often                           
long  and  irregular  in  shape,  the  bounding  box  almost  always  overlaps,  or  completely                           
subsumes,  the  bounding  box  of  other  objects.  Since  this  overlap  represents  a  significant                           
challenge  for  learning  algorithms,  we  also  labelled  the  location  of  the  original  germ  bud  of                               
each  hyphae,  or  estimated  the  start  cell  of  the  pseudohyphae;  these  bounding  boxes  were                             
labelled   H-  and   P-start  respectively.  Compared  to  hyphae/pseudohyphae  bounding  boxes,  H-                       
and  P-start  are  much  smaller,  and  therefore  disjoint  from  other  objects  in  the  image  ( Figure                               
1C-E ).  As  is  the  case  for  the  start  sites,  the  septal  junctions  in  hyphae  and  pseudohyphae  are                                   
visually  distinct  from  one  another.  Only  pseudohyphae  have  constrictions  at  the  mother-bud                         
neck  and  subsequent  septal  junctions.  We  placed  bounding  boxes  at  these  junctions  and                           
labelled  them  as   H-  or   P-junction .  Those  cells  for  which  we  could  not  reach  agreement  on                                 
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morphology  were  labelled  as   unknown ;  non-cellular  events  in  the  images  were  labelled  as                           
artifacts .     

We  stress  here  that  our  strategy  attempted  to  label  each  cell  using  only  its  visual  appearance                                 
and  independent  of  other  factors  including  the  predominant  morphology  of  cells  in  the  image.                             
For  example,  in  an  image  of  a  colony  grown  under  conditions  which  will  enrich  for  yeast  white                                   
cells,  we  still  expect  one  in  10 4  cells  to  stochastically  assume  the  opaque  morphology;  cells                               
on  the  border  between  these  morphologies  may  have  been  biased  towards  the  background                           
yeast   white   form.   In   some   cases,   a   consensus   was   difficult   to   achieve   across   labellers.   

  

Varasana:   a   cumulative   curriculum-based    C.   albicans    learning   set   for   Candescence   
Learning  sets  are  typically  tri-partitioned  ( Figure  1G ).  The   training  set  contains  a  large  set  of                              
images  which  are  presented  to  the  neural  network  during  training  and  used  to  fit  the  model                                 
(i.e.  update  the  weights  of  each  arc  in  the  neural  network).  The   validation  set  is  typically  a                                   
smaller  sample  of  data  which  is  used  to  generate  an  unbiased  estimation  of  the  model  fit                                 
during  training.  It  provides  a  means  to  tune  the  hyper-parameters  of  the  model.  The   test                               
dataset  is  used  only  once  after  all  training  is  complete  to  assess  the  final  fit  of  the  model.  We                                       
partitioned  the  images  from   Table  1A  so  that  cells  from  each  morphology  are  assigned  to  the                                 
training  and  validation  set  at  a  7:3  ratio.  This  procedure  was  confounded  by  the  fact  that  there                                   
is  significant  variability  in  both  the  number  of  cells  per  image  and  the  composition  of                               
morphologies  per  image.  From  the  collection  of  1214  images,  the  training  and  validation                           
dataset  contains   216  and  94  im ages  respectively.  These  images  in  turn  contain  4880  and                             
1958    objects   respectively.   The   independent   test   contains   the   remaining   904   images.   
FCOSs  have  several  hyper-parameters  that  affect  the  overall  performance  of  the  system                         
including  the  learning  rate  (the  amount  weights  are  updated  during  gradient  descent),                         
momentum  (a  parameter  that  stipulates  how  many  previous  steps  can  be  used  to  determine                             
the  direction  of  a  weight  update),  decay  (a  regularization  parameter  restraining  the  complexity                           
of  our  model),  epoch  number  (the  number  of  times  the  learning  phase  cycles  through  the                               
complete  training  and  validation  sets),  the  IoU  (the  intersection  of  union  statistic  controls  how                             
accurate  the  regression  of  the  bounding  box  must  be),  the  threshold   (the  lower  bound  for                        τ          
the  probability  an  object  is  assigned  a  class),  and  others  ( Figure  1H ).  We  performed  a  grid                                 
search  across  a  range  of  values  for  these  parameters  and  measured  convergence,  model                           
complexity  and  performance  after  each  trial  ( Methods  4-5 ).  Although  the  resultant  classifiers                         
had  good  performance  for  some  morphologies  (e.g,  F1  ~78%  for  white,  budding  white,                           
opaque,  gray  and  shmoo),  several  classes  remained  poorly  predicted  (e.g.  F1  ~50%  for                           
pseudohyphae  and  hyphae  related  classes)  and  budding  classes  were  poorly  distinguished                       
from   their   parent   (e.g.   F1   ~60%   for   budding   white,   gray   and   opaque).     
The  steep  increase  in  difficulty  between  yeast  white  and  the  filamentous  classes  highlighted                           
the  need  for  a  more  structured  learning  set.  We  opted  for  a  curriculum  approach 57,58 ,  a                               
well-established  concept  in  psychology  which  has  re-emerged  in  the  deep  learning                       
community.  The  fundamental  idea  is  to  structure  the  learning  set  so  that  the  neural  network  is                                 
exposed  to  concepts  according  to  their  difficulty,  with  the  easiest  concepts  presented  first.                           
Using  the  results  from  our  original  grid  search  to  judge  easy  and  difficult  objects,  we                               
re-designed  our  learning  set  into  grades  one  through  six.  Each  grade  was  enriched  for  a                               
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specific  subset  of  classes,  although  at  least  one  example  of  all  classes  was  present  at  each                                 
grade.  Simple  examples  of  yeast  white  for  example  were  placed  in  grade  1,  and  more                               
complicated  examples  (e.g.  crowded  images,  poor  image  quality)  were  placed  in  later  grades.                           
In  general,  grade  1  is  enriched  for  yeast  white  and  budding  white  cells,  grade  2  introduces                                 
opaque  and  budding  opaque,  grade  3  presents  gray  and  budding  gray,  grade  4  focuses  on  the                                 
shmoo  form,  grade  5  on  pseudohyphae  and  grade  6  concludes  with  hyphae.  Once  an  image                               
appears  at  a  certain  grade,  it  appears  in  all  subsequent  grades.  We  hypothesize  that  this                               
cumulative  strategy  ensures  that  lessons  learnt  early  with  populous  morphologies  such  as                         
yeast  white  and  opaque  are  retained  when  the  complicated  filamentous  morphologies  are                         
presented  to  the  learner.  All  grades  had  many  examples  of  artifacts  and  unknowns.  To  the                               
best   of   our   knowledge   this   is   the   first   use   of   a   cumulative   curriculum   learning   approach.   
A  new  grid  search  was  conducted  but  this  time  the  hyper-parameters  were  allowed  to  vary                               
across  the  different  grades.  This  grid  search  also  considered  different  levels  of  freezing  in  our                               
four  layer  FCOS.  Freezing  refers  to  the  process  of  disallowing  layers  of  the  neural  network  to                                 
change.  For  example,  the  most  restrictive  freezing  regimen  disallows  any  of  the  four  layers  to                               
change  in  response  to  new  examples,  implying  that  our  classification  is  solely  based  on  the                               
original  transferred  ResNet-101.  The  most  permissive  freezing  strategy  allows  all  layers  to  be                          
updated  during  training  when  presented  with  our  images.   Supplemental  Figure  1   breaks  down                           
the  learning  set  by  grade  and  classes,  and  provides  the  distribution  of  the  number  of  cells  per                                   
image.   
  

Searching   for   classifiers   of    C.   albicans    morphologies   
A  second  grid  search  was  performed  with  the  validation  dataset  across  the  hyperparameter                           
space.  The  search  required  ~60  days  of  continuous  computation  on  a  system  with  10  GPUs.                               
We  judged  performance  initially  using  the  mean  average  precision  (mAP) 59 ,  a  standard                         
approach  for  measuring  the  performance  of  multi-object/multi-class  problems,  across  all                     
trials  with  a  final  value  of  0.407  ( Methods  5 ).  This  best  classifier  has  a  learning  rate  of  0.01,                                     
momentum  of  0.97,  and  decay  of  0.001  ( Figure  1H ).  Analysis  of  the  loss  curves  established                               
that  1,000  epochs  at  each  grade  sufficed  for  convergence  for  each  of  the  three  component                               
loss  curves  ( Methods  5 ,   Supplemental  Figure  2 ).  An  initial  performance  assessment                       
suggested  that  an  IoU  of  0.5  and  a  of  0.25  maximized  the  recall,  precision  and  F1  which                  τ                  
were   estimated    to   be   82.4%,   66.5%   and   73.7%   respectively   ( Table   2 ).   
Somewhat  surprisingly,  the  performance  of  classifiers  with  more  liberal  freezing  strategies                       
was  better  than  strategies  that  froze  layers.  We  hypothesize  that  the  cumulative  nature  of  our                               
learning  set  guaranteed  that  the  network  retained  learnt  rules  from  early  grades  without  the                             
need  for  freezing.  To  the  best  of  our  knowledge,  we  have  not  seen  any  exploration  of                                 
cumulative  curriculum  learning  nor  the  observation  that  a  cumulative  curriculum  learning                       
approach  may  suffice  in  lieu  of  freezing.   Figure  2  depicts  the  ground  truth  labels  (left)  and                                 
predicted  objects  and  their  classifications  (right)  across  three  typical  images  containing  many                         
of  the  morphologies.  The  images  help  to  show  that  Candescence  is  able  to  cope  with                               
overlapping   objects   in   dense   images.   
  

Candescence   almost   never   hallucinates   but   has   some   blind   spots   
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The  performance  of  our  classifier  can  be  decomposed  into  its  object  detection  and  object                             
classification  components.  For  object  detection,  false  positives  refer  to  cases  where                       
Candescence  predicts  a  bounding  box  in  a  location  of  the  image  that  does  not  have  a  ground                                   
truth  bounding  box.  Using  the  94  images  of  the  validation  dataset  with  an  IoU  of  0.5  and  a                                     
range  of  thresholds  for  ,  we  manually  examined  all  false  positive  predictions.   Supplemental          τ                  
Figure  3   depicts  all  358  such  hallucinations  for  .  It  is  difficult  in  some  dark  images                  .25τ = 0                
(n=13)  to  detect  an  object  and  these  instances  were  confirmed  as  true  hallucinations  by                             
Candescence.  In  approximately  30  of  the  remaining  cases,  there  is  in  fact  an  object  in  the                                 
bounding  buy  but  the  predicted  classification  is  incorrect.  Essentially  the  labellers  (missed                         
bounding  box)  and  Candescence  (incorrect  class)  made  a  mistake.  In  all  remaining  315  cases,                             
Candescence  was  correct.  After  adjusting  the  performance  measures  by  removing  the  effects                         
of  these  human  errors,  the  recall,  precision  and  F1  rose  to  85.1%,  80.7%  and  83.2%                               
respectively  ( Table  2A ,  bold  red,   Methods  5 ).   Figure  3A  provides  a  small  sample  of  correct                               
and   incorrect   hallucinations.     
Candescence  however  does  miss  several  bounding  boxes  in  the  ground  truth  dataset  (n=301                           
false  negatives).  Approximately  one-quarter  of  such  blindspots  correspond  to  artifacts.                     
Artifact  is  a  heterogeneous  class  that  was  used  to  label  all  defects  in  the  microscopy  images                                 
regardless  of  their  individual  visual  qualities.  As  such,  it  is  perhaps  understandable  that                           
Candescence  does  not  learn  to  predict  this  class  well  as  there  is  no  consistent  set  of                                 
attributes.  Approximately  one-quarter  of  the  blindspots  are  related  to  objects  labelled  as  yeast                           
white  in  the  ground  truth  dataset  ( Table  2B ).  We  observed  a  recurring  pattern  across  these                               
cases:  often  the  white  cell  was  physically  adjacent  to  a  second  cell  ( Figure  3Bi ).  Forensic                               
investigation  of  the  neural  network  suggests  that  the  softmax  function  of  the  FCOS  distributes                             
the  probability  between  the  yeast  white  and  budding  yeast  white  uniformly.  This  causes  the                             
score  for  both  categories  to  fall  below  our  chosen  threshold  ;  hence  Candescence                      .25τ = 0      
fails  to  identify  a  bounding  box  in  that  location  of  the  image.  This  also  occurred  between                                 
opaque  and  budding  opaque.  In  fact,  more  than  one  third  of  the  images  of  the  validation                                 
dataset   had   at   least   one   problematic   prediction   of   this   form.     
Candescence  failed  to  identify  several  white  cells  in  dense  images  ( Figure  3Bii ),  and  failed  to                               
label  several  germ  tubes  cells  as  H-start.  As  well,  P-junctions  in  pseudohyphae  enriched                           
images  were  often  hard  to  identify  (~10%  of  all  blindspots).  A  P-junction  looks  like  two                               
adjacent  cells  with  a  bright  region  in  the  fluorescent  image.  This  pattern  is  not  unlike                               
countless  other  locations  in  the  images  that  capture  two  adjacent  cells,  or  budding  cells.  Our                               
hope  was  that  Candescence  would  learn  to  associate  the  presence  of  P-junctions  with  the                             
larger  bounding  box  of  the  pseudohyphae  itself  along  with  the  “nearby”  P-start.  There  is  some                               
indication  that  Candescence  has  learnt  this  calculus,  although  there  are  many  P-junctions  per                           
instance  of  pseudohyphae  and  they  can  be  quite  distal  to  the  P-start.  Lastly,  some  cells  near                                 
the  edges  of  the  image  were  overlooked  such  as  the  example  in   Figure  3B  iii.  Overall,  many  of                                     
the   blindspots   occur   in   dense,   crowded   images   similar   to    Figure   3Bii-iii .   
  

Candescence   exhibits   high   classification   accuracy   
Here  we  restrict  attention  to  only  those  objects  which  have  been  correctly  located  in  the                               
images  (n=2104)  and  investigate  the  classification  performance  of  Candescence.  In  total                       
there  are  382  errors  (accuracy  of  81.8%;   Table  2 ).   Figure  3C  depicts  the  confusion  matrix                               
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across  the  15  classes  in  the  validation  dataset  with  diagonal  entries  corresponding  to  correct                             
classifications.  Comparing  our  labels  to  predictions,   we  observe  pronounced  confusion                     
between  opaque  and  gray-like  with  some  51  opaque  cells  classified  as  gray-like,  and  19                             
gray-like  as  opaque.  Significant  but  slightly  reduced  confusion  exists  between  white  and                         
gray-like.  In  fact,  misclassifications  between  white,  gray-like  and  opaque  account  for  almost                         
one-third  of  all  classification  errors.  Although  there  is  considerable  confusion  between  these                        
three  classes,  we  note  that  the  statistical  performance  is  still  far  better  than  random,                             
suggesting  that  our  visual  inspection  and  labelling  was  at  least  partially  consistent.  A  smaller                             
degree  of  confusion  exists  between  hyphae  and  H-start.  The  softmax  appears  to  diffuse                           
probabilities  across  H-start,  white  and  budding  white,  for  some  bounding  boxes.  This  is                           
perhaps  another  manifestation  of  the  difficulties  we  observed  with  blindspots  depicted  in                         
Figure   3B.   
  

Candescence   retains   its   capacity   to   classify   genetically   perturbed    C.   albicans    in   the   test   set   
Our  test  set  of  904  images  serves  as  an  independent  measure  of  performance.  Some  images                               
of  SC5314  or  SN148a  strains  without  genetic  modifications  had  been  left  out  of  both  the                               
training  and  validation  set  but  were  grown  under  the  same  conditions  needed  to  induce                             
different  morphologies.  We  compared  Candescence  predictions  to  manual  curation  for                     
images  referenced  in   Table  1A  but  differences  in  performance  between  the  validation  and  test                             
set   were   insignificant    (comparison   of   proportions   𝜒 2    test,    Methods   5 ).     
The  test  also  contains   C.  albicans  colonies  grown  with  a  variety  of  conditions,  preparation                             
protocols,  and  genetic  perturbations  ( Table  1B ,   Supplemental  Table  1 ).  The  four  perturbed                         
genes  all  have  well-established  and  central  roles  in  filamentation  processes  and  the  regulation                           
of  morphology.  Modifications  of  these  genes  generated  cells  that  can  differ  visually  from                           
wildtype  morphologies,  creating  an  interesting  challenge  to  the  ability  of  Candescence  to                         
identify   and   classify   cells.     
Our  panel  includes  a  transformed  SC5314  strain  with  a  CRISPR/Cas9-based  homozygous                       
deletion  of  Unscheduled  Meiotic  gene  Expression  (UME6),  a  Zn(II)2Cys6  (zinc  cluster)                       
transcription  factor  that  controls  transition  to  true  hyphae  by  maintaining  expression  of                         
filament-specific  genes  in  response  to  inducing  conditions.  Although  cells  lacking  UME6  are                         
able  to  form  germ  tubes,  hyphal  extension  is  limited 60 .  Our  panel  also  includes  Biofilm                             
ReGulatory  1  (BRG1)  encoding  a  transcription  factor  that  recruits  the  histone  deacetylase                         
Hda1  to  hyphal-specific  promoters  and  removes  Nrg1  inhibition  to  promote  filamentation.                       
Filamentation  is  decreased  in  brg1Δ/brg1Δ  cells 61 .  We  did  not  detect  a  statistical  significant                           
difference  in  performance  of  Candescence  for  both   UME6  null  and   BRG  1   null  cells  under                               
conditions  inducing  both  the  white  morphology  ( Supplemental  Figure  4A )  and  the                       
pseudohyphae   morphology   ( Supplemental   Figure   4B ).     
Regulator  of  Hyphal  Activity  1  ( RHA1 )  encodes  a  zinc  cluster  transcription  factor  that  serves                             
as  a  regulator  of  the  Nrg1/Brg1  switch.  Hyperactivation  of  Rha1  can  trigger  filamentous                           
growth  in  the  absence  of  external  signals  or  in  the  presence  of  serum  can  bypass  the  need  for                                     
Brg1 62 .  Loss  of  Rha1  function  leads  to  reduced  ability  to  generate  hyphal  growth  in  the                               
presence  of  external  signatures.  Loss  of  both  Rha1  and  Ume6  ablates  filamentation                         
completely.  Although  Rha1  null  cells  generate  yeast  white  cells  with  standard  appearance                         
when  grown  at  30℃  in  YPD,  they  produce  smallish  pseudohyphae  with  reduced  branching                           
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when  grown  at  30℃  with  serum  added  to  the  YPD.  Candescence  does  successfully  label                             
pseudohyphal  substructures  including  P-start,  P-junction,  but  there  is  some  increased                     
confusion  with  hyphae  as  exemplified  in   Supplemental  Figure  4C .  A  minor  depreciation  in                           
accuracy   was   observed   and   this   was   statistically   significant   (p   <   0.05,   type   20    Table   1B ).      
We  cultured   RHA1  gain  of  function  (GOF)  mutants  constructed  using  the  zinc  cluster                           
hyper-activation  technique  from  Schillig  and  Morschhaeuser 63  and  observed  that  cells  grown                       
at  30°C  in  YPD  formed  pseudohyphae  that  tended  to  look  like  wildtype  ( Supplemental  Figure                             
4D ).  Some  of  these  images  were  used  in  the  training  and  validation  datasets  and  performance                               
remains  the  same  on  the  omitted  test  images.  However,  the  performance  of  Candescence  is                             
statistically  worse  in  RHA1  GOF/UME6  null  cells.  Although  these  cells  present  a  small                           
pseudohyphae  morphology,  the  images  tend  to  contain  multiple  tightly  packed  clusters,  which                         
we  hypothesize  contributes  to  an  increase  in  the  number  of  blindspots  ( Supplemental  Figure                           
4E ).     
RHA1  GOF/BRG1  null  cells  have  a  morphology  distinct  from  wildtype  hyphae  and                         
pseudohyphae,  comprising  elongated  chains  without  branching  and  with  less  pinching  at                       
junctions  ( Supplemental  Figure  4F ).  Here  Candescence  most  often  labels  these  cells  as                         
hyphae.  Interestingly,  if  an  object  has  been  labelled  as  hyphae,  the  junctions  are  labeled  as                               
H-junctions  and  not  P-junctions,  although  often  the  characteristic  pinching  of  pseudohyphae                       
is  clearly  present.  This  may  suggest  that  the  classification  rules  discovered  by  the  deep                             
learner   go   beyond   appearance   and   use   information   regarding   the   labels   of   nearby   objects.   
Candescence  again  experiences  a  loss  in  performance  with  RHA1  GOF/ BCR1  null  cells  grown                           
at  30°C  in  YPD  only.  Bcr1  is  a  C2H2  zinc  finger  transcription  factor  which  regulates  a/𝛼  biofilm                                   
formation  and  cell-surface-associated  genes.  The  homozygous  null  variant  exhibited                   
decreased  adhesion,  biofilm  formation,  and  cell  size.  There  is  conflicting  data  regarding                         
whether  it  promotes  or  inhibits  filamentous  growth,  however  cells  which  do  transit  to  a                             
filamentous  morphology  appear  abnormal 64,65 .  In  the  Varasana  image  set,  this  mutant  strain                         
generates  cells  that  appear  to  branch  similarly  to  pseudohyphae  but  the  individual  cells  are                             
yeast  white  or  budding  yeast  in  appearance.  They  tend  to  form  thick  clusters  in  the  image                                 
( Supplemental  Figure  4G ).  The  performance  decrease  is  highly  significant  (p  <  0.001)  with                           
many  cells  in  dense  clumps  labelled  as  white  or  budding  white.  Candescence  does  however                             
identify  the  location  of  the  vast  majority  of  cells  and  often  correctly  labels  isolated  objects  as                                 
pseudohyphae.  When  RHA1  GOF/ BCR1  n ull  cells  are  grown  at  37°C  with  serum  added  to  the                               
medium  (types  13,  17,  20,   Table  1B ),  we  observed  large  pseudohyphae  and  Candescence                           
classifies   correctly   at   the   same   rate   as   the   validation   set   ( Supplemental   Figure   4H ).   
  

The   space   of    C.   albicans    morphologies   is   complex   and   continuous   
We  observed  considerable  cell-to-cell  morphological  variability  across  the  images.                   
Heterogeneity  arises  due  to  technical  variations  (e.g.  light  intensity,  focus),  natural  biological                         
programs  (e.g.  cell  cycle  affecting  size/shape),  and  transitions  between  morphologies  (e.g.                       
growth  of  a  hyphal  cell  from  germ  tube).  These  sources  of  heterogeneity  complicate  both  the                               
manual  labeling  procedure  during  construction  of  the  learning  set  and  the  downstream  ability                           
of  an  FCOS  to  correctly  assign  morphology.  Our  goal  here  is  to  quantitatively  explore  the                               
complexity   of   the   Varasana   compendium   in   an   unbiased   manner.   
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Towards  this  end,  we  developed  an  unsupervised  approach  based  on  a  variational                         
autoencoder  (VAE) 66 .  A  VAE  is  a  generative  artificial  neural  network  that  uses  a  game                             
theoretic  approach  involving  two  players:  the  encoder  and  the  decoder.  Instances  of  each                           
object  (individual  cells  from  our  ground  truth  annotations)  are  provided  to  the  encoder.  The                             
encoder  re-represents  these  images  in  the  latent  (hidden)  layers  of  its  network.  Typically  the                             
latent  space  is  much  smaller  than  the  size  of  the  original  input,  forcing  the  encoder  to  build                                   
succinct  models  capturing  the  most  salient  features  of  each  image.  The  goal  of  the  decoder                               
is  to  reconstruct  the  original  image  from  only  the  encoder’s  latent  representation.  The  encoder                             
and  decoder  together  are  penalized  according  to  how  much  the  reconstructed  image  differs                           
from  the  original.  This  cycle  is  repeated  for  many  epochs  across  the  training  and  validation                               
sets.  Note  that  this  encoding  is  built  in  an  unsupervised  manner  as  it  does  not  make  use  of                                     
the  class  labels  (morphological  assignments).  Our  particular  VAE  uses  several  convolutional                       
layers  to  encode  each  image  in  a  2D  latent  space  across  all  wildtype  (SC5314,  SN148a)  cells                                 
detected  by  the  FCOC-classifier  and  𝛽  parameter  that  down-weights  the  Kullbach-Leibler                       
component   of   the   loss   function   ( Methods   6 ,    Supplemental   Figure   5 ).   
After  training,  the  resultant  encoder  was  applied  to  all  cells  from  the  test  and  validation  sets                                 
and  the  two-dimensional  latent  space  visualised  ( Figure  4 ).  Rather  than  islands  of  distinct                           
isolated  cells,  we  observe  an  unbroken  continuum  in  both  the  V1  and  V2  axes.  Although  some                                 
dimensions  of  the  latent  space  capture  specific  morphologies  (e.g.  shmoo,  hyphae  and                         
pseudohyphae  on  the  left  end  of  the  first  V1  dimension),  there  is  a  ubiquitous  imperfect                               
separation  between  all  of  the  morphologies.  This  suggests  that  almost  all  morphologies  have                           
instances  that  are  difficult  to  differentiate  from  one  another.  Yeast  white  cells  span  almost  the                               
entire  first  latent  dimension,  overlapping  in  some  regions  heavily  with  gray-like  and  opaque.                           
Several  technical  artifacts  including  light  intensity  drive  the  scatterplot  especially  in  the  first                           
V1  dimension.  The  second  V2  dimension  primarily  captures  differences  in  the  size  and  texture                             
of   the   cells.     
  

Capturing   the   canonical   forms   of    C.   albicans    morphologies:   generative   adversarial   networks   

A  sufficiently  large  collection  of  images  will  likely  capture  snapshots  of  cells  in  all  technical                               
(e.g.  different  light  intensities),  developmental  (e.g.  across  each  step  of  the  cell  cycle)  and                            
morphological  states  (e.g.  along  the  transition  from  germ  tube  to  hyphae).  Our  goal  here  is  to                                 
build  pseudotime  models  from  these  images  that  capture  the  progression  of  these  technical                           
and  biological  variables.  Our  approach  is  based  on  generative  adversarial  networks  (GANs).                         
Intuitively,  this  deep  learning  technique  re-represents  the  images  in  a  latent  space  in  a  manner                               
that  captures  this  step-by-step  progression.  Then  computational  techniques  can  search  for                       
trajectories  through  the  latent  space  that  correspond  to  a  specific  effect  of  interest  (e.g.  a                               
specific  transformation  between  two  morphologies).  This  allows  us  to  derive  continuous                       
“movie-like”   models   of   cells   morphing   along   this   trajectory.     

GANs  are  trained  using  a  game-theoretic  adversarial  approach  that  pits  two  deep  networks  -                             
the   generator  and  the   discriminator  -  against  each  other 67 .  The  purpose  of  the  generator  model                               
is  to  create  “fake”  examples  of   C.  albicans  cells  with  different  morphologies.  These  fake                             
images  are  created  to  deceive  its  adversary,  the  discriminator  model.  The  generator  is  allowed                             
to  feed  both  fake  and  real  images  to  the  discriminator  model,  whose  goal  is  to  differentiate                                 
between  the  two.  The  generator  is  then  told  which  images  the  discriminator  got  right  or                               

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.10.445299doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?Q5Dz6u
https://www.zotero.org/google-docs/?cWwOCx
https://doi.org/10.1101/2021.06.10.445299
http://creativecommons.org/licenses/by/4.0/


  
  

wrong;  this  information  is  used  to  update  the  generative  model  (which  corresponds  to                           
updating  parameters  of  the  neural  network).  This  creates  an  “arms  race”  between  the  deep                             
networks.  After  a  sufficient  number  of  epochs,  the  generator  will  ideally  produce  fake  images                             
of   C.  albicans  morphologies  which  cannot  be  distinguished  from  true  images  by  the                           
discriminator.  Our  GAN  is  based  on  the  computationally  accessible  method  from  Liu  and                           
colleagues 68  and  learnt  using  the  training  and  validation  components  of  the  Varasana  dataset                           
( Methods   7 ).     

After  training,  we  exploit  the  generator  to  explore  trajectories  in  our  latent  space.  We  start  with                                 
two  images  representing  the  end-points  of  a  process  of  interest.  For  example,  the  left                             
end-point  might  be  a  real  image  of  a  yeast  white  cell  while  the  right  end-point  might                                 
correspond  to  an  opaque  cell.  We  then  used  a  process  called  inversion 69  to  find  a                               
representation  of  these  two  images  in  the  latent  space  of  the  generator  ( Methods  7 ).  F igure                               
5A   depicts  examples  of  target  images  and  their  nearest  neighbour  in  the  latent  space.  Next,                               
the  system  finds  a  linear  path  between  these  two  points  in  the  latent  space,  so  that  the                                   
nearest  neighbour  of  the  final  “fake”  image  at   is  the  real  image  at  the  right  endpoint.  Lastly,                  t7                    
the  intermediate  “fake”  images  are  reconstructed  from  the  latent  space  to  provide  a                           
visualization  of  the  trajectory  using  the  generator  function.   Figure  5B  (i)  depicts  the  results  of                               
applying  this  procedure  to  find  yeast  white  to  opaque  morphological  switch.  Interestingly,  the                           
system  seems  to  arrive  at  a  decision  point  at  .  At  this  point,  the  trajectory  could  bifurcate                    t7                
towards  budding  white,  although  in  this  case  it  continues  towards  opaque.  As  a  comparison,                             
when  we  asked  for  a  trajectory  from  yeast  white  to  budding  white  ( Figure  5B  ii ),  the  trajectory                                   
stays  true  to  the  yeast  form  and  does  not  appear  to  wander  towards  the  opaque  morphology.                                 
The  hypothesized  bud  is  perhaps  somewhat  disproportionately  large  compared  to  its  mother,                         
and  larger  than  the  bud  of  the  real  image.  Panel   5B  (iii)  presents  a  trajectory  that  starts  with  a                                       
budding  opaque  cell.  Both  cells  appear  to  bud  a  second  time  from  through  .  The  progeny                          t4   t6      
of  the  daughter  cell  (left)  disappears  from  the  trajectory.  Although  imperfect,  the  system                           
appears  to  have  learnt  a  reasonable  model  of  pseudohyphal  development  from  relatively  few                           
(~200)  images.  Continuous  movies  for  each  of  these  trajectories  are  available  in  the                           
supplementary   material.   

Detecting   deviations   from   standard    C.   albicans    morphologies:   anomaly   detection   with   GANs   

Microscopy  is  routinely  used  to  judge  whether  a  specific  genetic  or  environmental                         
perturbation  has  led  to  an  observable  phenotype.  This  could  manifest  as  a  visual  change  in                               
the  composition  of  cells  in  an  image  (e.g.  an  increase  in  opaque  cells  versus  control),  a                                 
difference  in  the  spatial  distribution  of  cells  in  the  image  (e.g.  clumping  of  cells),  or  a  change                                   
in  appearance  of  the  cell  (e.g.  shortened  hyphae,  large  vacuoles).  In  this  section,  we  build                               
upon  our  GAN-based  morphology  models  to  address  the  third  issue,  namely  a  system  capable                             
of  deciding  whether  the  cells  in  an  image  deviate  significantly  from  the  space  of  wildtype   C.                                 
albicans  morphologies.  Our  hope  is  that  the  deep  learner  is  more  sensitive  than  “eyeballing”                             
microscopy  images  when  manually  attempting  to  investigate  if  an  experimental  strain  is                         
abnormal.     

The  algorithm  starts  by  mapping  a  target  bounding  box  (representing  a  single  cell,  hyphae  or                               
pseudohyphae)  into  the  latent  space  of  the  GAN’s  generator  ( Methods  8 ).  The  nearest                           
neighbour  in  the  latent  space  is  found;  this  corresponds  to  the  object  from  the  training  and                                 
validation  dataset  that  is  visually  most  similar  to  the  target.  The  distance  between  the  target                               
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cell  and  nearest  neighbour  is  computed  using  a  specialized  similarity  metric  developed  from                           
the  Learned  Perceptual  Image  Patch  Similarity 70  measure.  The  intuition  is  that  distances                         
between  a  target  with  a  normal  morphology  will  have  a  nearest  neighbour  that  is  closer  in  the                                   
latent   space   than   a   target   with   a   very   abnormal   morphology.     

Figure  6  represents  an  example  of  using  this  test  with  a   RHA1  GOF/ BCR1  null  colony.                               
Candescence  is  first  used  to  identify  the  objects  and  their  morphology  in  the  image,  and  the                                
anomaly  score  is  computed  for  each  such  object  in  the  latent  space  built  from  the  Varsana                                 
learning  set.  When  we  compare  the  distribution  of  anomaly  scores  between  all  images  from                             
this  mutant  colony  (type  13)  and  compare  them  against  a  collection  of  “wildtype”                           
pseudohyphal  cells  (type  65),  we  observe  a  statistical  enrichment  of  outliers  with  abnormal                           
morphology  (Kolmogorov-Smirnoff  test,  p  <  0.01).  We  generally  do  not  observe  differences  at                           
the  low  end  of  anomaly  scores,  as  almost  all  images  from  genetically  perturbed  colonies  still                               
contain   many   examples   of   cells   with   normal   morphology.    

  

Conclusions   

Candescence  includes  a  multi-object  detection  algorithm  capable  of  accurately  classifying                     
nine   C.  albicans  morphologies.  It  is  based  on  a  fully  convolutional  one-stage  (FCOS)                           
architecture  which  both  locates  objects  and  classifies  them  with  high  accuracy.  The  system  is                             
trained  with  the  Varasana  learning  set  consisting  of  ~1,200  total  images.  The  training  and                             
validation  datasets  consist  of  310  images  which  have  been  manually  annotated  with                         
bounding  boxes  and  class  assignments.  Using  transfer  learning,  the  starting  point  for  training                           
is  ResNet-101,  a  network  capable  of  locating  and  classifying  common  household  items  and                           
pets.  It  is  possible  that  the  image  building  blocks  (textures,  edges,  colours)  encoded  in                             
ResNet-101  are  not  optimal  for  (DIC)  microscopy.  As  our  collection  of   C.  albicans   images                             
grows,  it  may  be  feasible  to  build  a  microscopy-specific  analog  of  ResNet-101  and  improve                             
performance.     

Since  a  flat-structured  learning  set  led  to  suboptimal  performance,  we  developed  a  six  grade                             
curriculum  learning  set  and  ordered  examples  by  increasing  difficulty.  To  the  best  of  our                             
knowledge  we  are  the  first  to  use  a  cumulative  strategy  where  images  appear  at  some  grade                                 
and  re-appear  in  all  subsequent  grades.  We  hypothesize  that  this  approach  removes  the  need                             
for  layered  freezing  strategies.  This  is  advantageous,  since  optimization  of  hyper-parameters                       
is  computationally  expensive  and  the  space  of  possible  freezing  strategies  grows                       
exponentially   in   the   number   of   grades   and   network   layers.   

Candescence  has  very  good  performance.  Given  that  an  object  has  been  correctly  regressed                           
in  the  image,  it  will  be  assigned  the  correct  class  label  with  ~82%  probability.                             
Misclassifications  tend  to  occur  between  morphologies  that  ‘overlap’  as  highlighted  by  the                         
VAE  plots  of   Figure  4 .  Confusion  tends  to  exist  between  vegetative  morphologies  and  their                             
budding/mating  forms  (e.g.  from  white  yeast  to  budding  white).  The  difficulty  here  for                           
Candescence  is  to  judge  cases  where  the  daughter  cell  is  large  but  still  attached  versus                               
detached  but  still  physically  adjacent  to  its  mother.  We  hypothesize  that  a  larger  set  of  training                                 
examples  will  remove  this  confusion.  Inclusion  of  time  lapse  images  of  specific  biological                           
processes  would  also  improve  performance.  Moreover,  integration  of  the  matched  fluorescent                       
images  with  the  current  grayscale  DIC  image  would  perhaps  provide  the  learning  procedure                           
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with  the  necessary  information  to  judge  whether  separation  has  occurred.  It  would  be                           
straightforward  to  encode  the  fluorescent  image  as  an  added  dimension  beyond  the  gray                           
scale  800x800  input  currently  used.  We  did  not  pursue  this  avenue  in  the  first  version  due  to                                   
complications   in   the   training   procedure,   since   some   fluorescent   images   were   not   available.   

The  construction  of  any  learning  set  requires  consistent  labelling  rules.  In  our  setting,  there                             
were  visible  differences  in  sizable  subpopulations  that  stretch  from  yeast  white  to  opaque.                           
Figure  4  reinforces  that  this  heterogeneity  is  continuous  with  several  areas  enriched  for  cells                             
with  a  common  but  perhaps  non-canonical  appearance.  This  includes  a  large  number  of  small                             
rectangular  “gaunt”  cells  we  labelled  as  gray-like.  Candescence  is  at  times  confused  between                           
the  yeast  white,  gray-like  and  opaque  morphologies,  an  expected  observation  given  that  there                           
were  many  images  for  which  we  were  unable  to  form  consensus  as  a  group.  Absolute                               
assessment  of  true  gray  versus  our  gray-like  is  out  of  reach  for  this  study  as  we  lack  the                                     
necessary   molecular  markers  as  per  the  original  findings  of  Tao  and  colleagues 16 .  Although                           
false  classifications  are  enriched  between  white,  opaque  and  gray-like,  the  success  rate  is  still                             
very  good,  suggesting  that  this  dichotomy  does  exist  in  the  images.  If  these  cells  had  instead                                 
been  randomly  assigned  the  three  class  labels  without  regards  to  physical  appearance,  it  is                             
highly  unlikely  a  classifier  could  learn  to  distinguish  them  with  statistically  significant                         
performance.  Although  the  relationship  to  the  Tian  et  al.  gray  cells  remains  unsettled,  it  does                               
suggest  that  there  is  interesting  substructure  across  the  vegetative  forms  that  is  perhaps  not                             
captured  by  our  current  dichotomy;  other  cryptic  morphologies  could  exist.  These  physically                         
distinct  subcolonies  could  represent  simply  canonical  vegetative  forms  at  specific  moments                       
of  their  development,  or  could  represent  phenotype  diversity  that  arises  in  response  to  an                             
environmental  or  communal  cue 71 .  Building  upon  this  primeval  version,  Candescence  may                       
eventually   allow   for   the   interrogation   of   community   structure   and   interaction.   

Imagery  of  stained  or  fluorescent  reporter  molecules  would  help  resolve  issues  of  cryptic                           
morphologies  and  would  extend  the  capacity  of  the  system  to  classify  using  subcellular                           
features.  This  technique  has  been  used  successfully  to  explore  changes  to   S.  cerevisiae  in  the                               
presence  of  genetic  perturbations 55 ,  although  Baker’s  yeast  does  not  have  as  large  a  range  of                               
morphologies   as    C.   albicans .     

Our  system  initially  appeared  to  have  significant  challenges  during  the  object  detection  step.                           
However,  careful  analysis  of  the  false  positive  detections  suggest  that  many  such  events  are                             
in  fact  not  “hallucinations”  but  “false  false  positives”.  That  is,  they  correspond  to  true  events  in                                 
the  image  files  that  we  missed  during  the  manual  annotation  procedure.  A  large  portion  of                               
these   events   correspond   to   either   subtle   technical   artifacts   or   small   cells   in   crowded   images.     

Candescence  appears  to  have  some  blind  spots,  missing  cells  that  are  annotated  in  the                             
ground  truth  dataset.  The  tradeoff  between  false  negatives  and  positives  is  controlled  by                           
underlying  IoU  and  threshold  𝛕  parameters.  We  observed  that  accurate  bounding  boxes  were                           
indeed  regressed  for  the  majority  of  these  false  negative  objects  but  such  objects  required  an                               
abatement  of  either  the  IoU  or  𝛕  parameters  before  they  were  reported  as  positive  predictions.                               
Our  forensic  analysis  of  the  neural  network  suggests  that  this  is  due  to  confusion  between,  for                                 
example,  yeast  white  and  yeast  budding  white;  the  probability  is  amortized  over  two  or  more                               
classes   and   therefore   drops   below   𝛕.   

Furthermore  with  respect  to  blindspots,  we  hypothesize  that  the  differences  in  size  and  shape                             
between  the  morphologies  (e.g.  yeast  white  versus  pseudohyphae)  induce  different                     
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distributions  of  IoU  and  𝛕  scores.  Therefore,  in  images  containing  diverse  cell  types,  the  single                               
universal  𝛕  is  essentially  too  conservative  for  some  morphologies  but  too  liberal  for  others.  It                               
is  an  interesting  future  challenge  to  modify  FCOS-based  classifiers  to  adjust  for  this                           
heterogeneity   in   a   statistically   sound   manner.     

We  explored  in  the  independent  test  set  a  range  of  genetically  altered   C.  albicans  populations                               
involving  genes   RHA1 ,   UME6 ,   BCR1  and   BGR1  with  established  roles  controlling  filamentation.                         
The  observed  changes  in  classification  accuracy  is  consistent  with  the  fact  that  these                           
morphologies  represent  shifts  away  from  wildtype  forms.  The  Candescence  response  to                       
these   perturbations   is   intuitive    and   largely   retains   its   performance.   

Variational  autoencoders  (VAEs)  provide  a  convenient  tool  for  modelling  the  diversity  of  cells                           
caused  by  natural  cellular  programs,  morphologies  and  technical  artifacts.  We  observe  a                         
nearly  unbroken,  continuous  distribution  of  points  in  our  two-dimensional  embedding,                     
suggesting  that  the  underlying  space  of   C.  albicans  morphologies  are  also  continuous  and                           
overlapping,  as  perhaps  expected.  We  certainly  cannot  rule  out  the  possibility  that  a  more                             
advanced  architecture  for  the  VAE  would  better  separate  the  morphologies.  However  we                         
stress  that  this  specific  VAE  easily  separates  the  vast  majority  of  points  in  other  deep  learning                                 
sets  including  MNIST 72  and  Omniglot 73 ,  suggesting  the   C.  albicans  morphology  is  at  least  as                             
difficult   as   these   well-studied   learning   challenges.   

To  the  best  of  our  knowledge,  this  is  the  first  attempt  to  capture  the  space  of  C.  albicans                                     
morphology  in  a  continuous  manner  that  respects  technical  variation,  developmental                     
processes  and  morphological  transitions.  Our  intention  is  that  the  GAN  models  can  be  used  to                               
automatically  detect  new  morphologies  that  are  perhaps  subtly  different  from  our  current                         
dichotomy.  Using  tools  for  detecting  anomalies  via  the  generator’s  latent  space,  we  show  how                             
cells  displaying  non-canonical  morphological  forms  can  be  flagged  and  quantified.  This                       
should  find  practical  value  in  microscopy  based  studies:  the  tool  will  provide  the  community                             
with  a  central  resource  that  not  only  houses  all   C.  albicans  images  but  also  unbiased  models                                 
developed  from  those  images  that  extended  to  non-canonical  morphologies.  Future  studies                       
will  benefit  from  the  ability  to  compare  their  images  across  this  synthesized  sum  of                             
knowledge.   The   technique   should   be   straightforward   to   transfer   to   other   fungi.   

We  have  shown  that  the  deep  learning-based  approaches  are  able  to  recapitulate  the                           
classification  rules  that  are  encoded  by  our  choice  of  labelling  strategy.  It  is  unlikely  that  our                                 
labelling  strategy  is  correct  and  other  labellers  with  more  or  different  expertise  may  have                             
chosen  a  different  way  to  partition  the  learning  set  and  assign  labels  to  individual  examples.                               
Although  we  attempted  to  be  as  consistent  as  possible  when  assigning  class  labels  in                            
Varasana  version  1.0,  our  labels  are  certainly  imperfect  and  open  to  debate.  The  classifier                             
does  however  function  far  beyond  random  guesses,  suggesting  that  our  scheme  has  some                           
value.   

There  is  evidence  that  Candescence  is  able  to  “overcome”  errors  and  inconsistencies  between                           
labellers.  This  is  a  well  documented  problem  in  image  recognition  research  including                         
computational  pathology 74 .  We  argue  that  the  computational  techniques  introduced  to                     
computational  pathology  are  largely  applicable  to  fungal  systems.  For  example,  machine                       
learning  based  analysis  of  medical  images  has  been  shown  to  be  more  sensitive  than  trained                               
pathologists  identifying  small  events  and  complex  patterns  beyond  perhaps  human                     
capacities 75 .  As  Candescence  evolves  to  include  stainings,  fluorescent  markers  and  a  greater                         
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spectrum  of  microscopy  imaging  techniques,  it  may  reveal  cryptic  cell  or  subcellular  structure                           
or  community  organization.  Computational  approaches  in  imaging  provide  a  means  to                       
combine  different  modes  of  data,  and  to  provide  downstream  analyses  that  integrate  this                           
information  in  a  statistically  sound  manner 76–78 .  For   C.  albicans ,  this  might  entail  the                           
integration  of  information  concerning  strain,  growth  conditions  and  genetic  challenges                     
together  with  images  to  better  understand  the  composition  and  dynamics  of  colonies.                         
Imaging  standards  analogous  to  the  Digital  Imaging  and  Communication  (DICOM) 79  for                       
microbial  systems  including  imaging  of  host  tissue  would  enable  better  data  sharing  across                           
the   fungal   community   and   allow   for   “hive   analysis” 80 .     

Last  and  perhaps  most  importantly,  a  surprising  degree  of  disagreement  has  been  observed                           
(and  quantified  via  Cohen’s  𝞳  score)  between  expert  pathologists  when  challenged  with  the                           
same  images 81 .  Our  limited  experience  with   C.  albicans  morphology  suggests  that  there  may                           
be  similar  disagreements  across  experts  in  this  field.  Such  differences  may  hint  at  important                             
alternative  classification  schemes.  These  differences  may  be  important  as  Candescence  is                       
extended  into  clinical  samples  where  the  presence  of   C.  albicans  and  its  morphology  are                             
considered  concomitantly  within  their  host  tissue.  Our  effort  here  represents  an  opportunity                         
for  the  community  to  kernelize  their  knowledge  of  the  dynamics  of  morphologies  in  a                             
quantitative   objective   manner.   

  

Materials   and   Methods   
  

1.   A   fully   convolutional   one-stage   object   detector   for   morphology   classification   
  

There  are  fundamentally  two  computational  problems  underlying  multi-class,  multi-object                   
detection.  The  first  problem  is  to  detect  the  locations  in  an  image  where  objects  exist;  this  is  a                                     
regression  to  determine  the  four  coordinates  corresponding  to  the  corners  of  the  bounding                           
box.  In  our  case,  the  number  of  objects  per  image  ranges  up  to  ~100  ( Supplemental  Figure  1 )                                   
and  objects  may  overlap  in  these  images  especially  with  respect  to  the  filamentous                           
morphology.  Most  object  detectors  rely  on  pre-defined  anchor  boxes.  An  anchor  box  is  a                             
rectangle  that  bounds  an  object  in  an  image.  Approaches  that  use  anchor  boxes  make                             
educated  guesses  where  objects  might  exist  in  the  image  in  addition  to  guesses  regarding  the                              
size,  aspect  ratio  and  number  of  such  boxes.  The  fact  that  there  are  exponentially  many                               
potential  anchor  boxes  in  any  image  makes  this  a  computationally  demanding  exercise.                         
Moreover,  there  are  many  parameters  (size,  aspect  ratio  and  number  of  boxes)  that  require                             
optimization  and  re-design  on  new  datasets.  The  second  problem  is  then  to  correctly  label                             
each   object   by   its   class   (morphology,   start   or   junction   attribute,   unknown   or   artifact).   

Here  we  have  opted  to  use  a  fully  convolutional  one-stage  object  detector  (FCOS)  for                             
classifying   C.albicans  morphology 56 .  FCOSs  represent  an  anchor  box-free  reformulation  of                     
object  detection.  This  is  achieved  by  predicting,  for  each  point  in  each  feature  map,  the  offset                                 
position  to  the  top-left  and  bottom-right  coordinates  of  a  bounding  box.  Five  feature  maps  are                               
produced  and  each  such  map  is  limited  to  predicting  bounding  boxes  of  a  predetermined  size.                               
For  example,  the  first  feature  map  predicts  bounding  boxes  with  maximum  area  of  30x30                             
pixels,  while  the  final  feature  map  is  used  to  predict  bounding  boxes  with  maximum  area  of                                 
128x128  pixels.  A  standard  convolutional  neural  network  is  used  with  a  softmax  head  for  the                               
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classification  component.  We  developed  Candescence  on  top  of  the  open-source                     
implementation   of   FCOS   provided   by   the   machine   vision   platform   MMDetection 82    ( Figure   1F ).     
  
  

2.   Strains   and   Media   

Images  of  yeast  white,  opaque  and  shmoo  morphologies  were  acquired  from   C.  albicans                           
SN148a  cells  grown  on  YPD  agar  (1%  yeast  extract,  2%  bacto-peptone,  2%  D-glucose,  2%  agar                               
and  50  µg/mL  uridine).  Opaque  switching  was  induced  by  growing  cells  on  SC  Glucosamine                             
media  (0.67%  yeast  nitrogen  base  lacking  amino  acids,  0.15%  complete  amino  acid  mixture,                           
2%  agar,  1.25%  N-acetylglucosamine  (GlcNAc),  100  µg/mL  uridine).  We  used  5  µg/mL                         
phloxine  B  to  stain  opaque  colonies.  The  shmoo  morphology  was  induced  by  treating  opaque                             
cells   with   10   µg/mL   α-pheromone   for   24   hrs   in   room   temperature   shaking   at   220rpm.     

To  Induce  filamentation  in  wild  type  SC5314,  two  colonies  of  cells  was  grown  separately  in                               
5ml  of  glucose-phosphate-proline  (GPP)  media 83 ,  (2.5  mM  KH2PO4  (pH  6.5),  10.2  mM                         
L-proline,  2.6  mM  N-acetyl-D-glucosamine  and  3  mM  MgSO47H2O,  20%  glucose)  for  12  to  16                             
hours  in  30  and  37℃  shaker  incubator.  The  next  day,  1  ml  of  cells  from  each  colony  were                                     
washed  twice  with  1ml  1X  PBS.  Different  genetic  variants  of  the  SC5314  strain  were  also  used                                 
to  generate  colonies  enriched  for  filamentous  morphologies.  After  growth,  cells  were  washed                         
with  1X  PBS  and  diluted  to  different  OD600  values  in  fresh  liquid  Spider,  YPD  or  combinations                                 
of  YPD  and  Fetal  Bovine  serum  with  or  without  centrifugation  as  per   Supplemental  Table  1 ,                               
which   provides   a   complete   list   of   strains,   conditions   and   protocols.   
  
  

3.   Microscopy   

C.  albicans   colonies   were  mounted  on  slides  and  stained  with  a  concentration  of  2  μg/ml                               
calcofluor  white  for  20  minutes  before  imaging.  Images  of   C.  albicans  were  captured  using  a                               
Leica  DM6000  upright  microscope  equipped  with  100x  (NA  1.3),  60x  (NA  1.4)  and  40x  (NA                               
0.75)  lenses  and  a  Hamamatsu  Orca  ER  camera.  For  DIC  images,  samples  were  captured                             
using  DIC  optics  and  the  built-in  transmitted  illuminator  of  the  microscope.  For  cells  labelled                             
with  fluorescent  probes,  samples  were  illuminated  with  a  100W  mercury  bulb  (Osram)  and                           
passed  through  filter  cubes  optimised  for  illumination  of  calcofluor  white-labelled  samples  (ex                         
377/50,  em  447/60).  We  used  the  fluorescent  images  during  the  manual  labelling  procedure                           
to  help  decide  the  best  morphological  assignment.  This  was  particularly  relevant  to                         
distinguish  between  white/opaque/gray-like  and  their  budding  variants,  and  also  between                     
junction  types  for  the  filamentous  morphologies  as  bud  scars  are  clearly  visible.  However  the                             
fluorescent  images  were  not  submitted  to  the  FCOS  (or  other  deep  learning  tool)  during                             
training.   They   are   available   as   part   of   the   Varasana   learning   set.   

4.   Image   annotation   and   development   of   the   learning   set  

In  general,  all  computations  were  done  using  Python  version  3.7  and  R  version  3.6.3.  Our                               
learning  set  was  prepared  using  Labelbox  ( https://labelbox.com ),  software  that  facilitates  the                       
distributed  annotation  of  image  files.  As  a  group,  we  labelled  images  following  the  guidelines                             
from  Sudbery  et  al. 21 ,  Whiteway  and  Bachewich 11 ,  Noble  et  al. 23  and  Tao  et  al. 16 .  Labelbox                               
assigns  images  in  a  manner  that  guarantees  the  same  image  is  scored  by  multiple  labellers.                               
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One  labeller  (MH)  modified  assignments  after  the  first  round  of  labelling  to  ensure                           
consistency  as  best  possible  across  the  labellers.  A  second  round  of  quality  control  was                             
performed  by  MH  after  the  grid  search  was  completed  and  our  best  classifier  identified.  Here                               
all  false  positives  and  negatives  were  examined  and  a  decision  was  made  as  to  whether  the                                 
instance   was   a   labelling   mistake,   or   a   mistake   made   by   the   classifier.     

5.   Measures   of   system   performance   

Throughout  the  following  TP,  TN,  FP,  FN  denote  true  positives,  true  negatives,  false  positives                             
and  false  negatives  respectively.  Recall  (a.k.a.  sensitivity)  measures  the  rate  of  false                         
negatives   whereas   precision   measures   the   rate   of   false   positives:   

 ecall  , Precision  .R =   TP
(TP+FN )   =   TP

(TP+FP )  

The  measure  is  convenient  as  it  combines  both  the  recall  and  precision  into  a  single    F 1                            
summary   statistic:   

.   F 1  =  
TP

TP  +  (FP  + FN )2
1 =   2

recall + precision­1 ­1  

In  multi-object/multi-class  problems  there  are  two  fundamental  parameters.  The  first                     
parameter  is  related  to  the  object  detection  component  of  the  FCOS  and  is  termed  the                               
Intersection   over   Union   (IoU)   value:   

IoU   =   .  Area of  Union
Area of  Intersection  

Throughout  this  manuscript,  we  use  a  threshold  of  0.5  for  the  IOU.  The  IoU  controls  how                                 
closely  the  predicted  bounding  box  must  overlap  with  the  ground  truth  bounding  box  to  be                               
considered  a  positive.  More  stringent  IOUs  tend  to  decrease  the  recall  of  the  system                             
significantly   with   recall   dropping   due   to   a   rapid   increase   in   the   number   of   false   negatives 84 .    
The  second  parameter  is  related  to  the  classification  component  of  the  FCOS.  Here                             τ  
represents  the  minimum  value  from  the  softmax  of  the  classification  head  of  the  FCOS  that                               
must  be  exceeded  if  an  object  is  to  be  assigned  a  class.  More  precisely,  the  score  that  an                                     
object  belongs  to  each  of  the  15  classes  is  computed.  It  is  assigned  a  class  if  and  only  if  (i)                                         
the   class   has   the   highest   score   and   (ii)   the   score   exceeds   .  τ  
The  dual  nature  of  object  detection/object  classification  problems  requires  refinement  of                       
these  fundamental  concepts.  We  say  that  an  object  in  an  image  is  a  TP  if  and  only  if  the                                       
bounding  box  is  predicted  correctly  (i.e.  the  IoU  >  0.5)  and  the  object  is  then  classified                                 
correctly:      

,   where     is   the   true   class   of   the   target     and     rgmax score(σ, c)κ = a class c   κ σ core(σ, κ) τ . s   >     

The  concept  of  a  true  negative  in  this  setting  is  tricky,  since  any  pixel,  which  does  not  belong                                     
to  a  bounding  box  in  an  image,  is  in  essence  a  TN.  An  object  is  a  FP  if  and  only  if  either  (i)  the                                                 
predicted  bounding  box  does  not  overlap  sufficiently  with  a  ground  truth  bounding  box,  or  (ii)                               
the  predicted  bounding  box  does  overlap  sufficiently  with  a  ground  truth  bounding  box  but  the                               
classification  is  incorrect.  Type  (i)  is  termed  as   hallucination .  Type  (ii)  is  a  misclassification.                             
An  object  is  a  FN  if  and  only  if  we  fail  to  predict  a  bounding  box  with  sufficient  overlap  with  a                                           
ground   truth   bounding   box.   We   term   these   FNs    blindspots .   
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The  mean  average  precision  (mAP)  is  the  standard  and  preferred  approach  for  measuring  the                             
performance  of  multi-object/multi-class  problems 59 .  The  mAP  computes  the  average  of  the                       
average  precision  over   Here  the  average  precision  corresponds  to  the  area  under  the        .τ                      
precision  recall  curve  induce  by  a  specific  threshold  for  the  IoU  and  varying  .  The  maximum                            τ      
value   for   the   mAP   is   1.   
Within  an  FCOS,  total  loss  is  computed  as  the  sum  of  three  individual  losses:  center-ness,                               
bounding  box  and  classification  loss  ( Supplemental  Figure  2 ).  The  concept  of  center-ness                         
loss  is  specific  to  the  FCOS  and  represents  a  mechanism  to  avoid  the  identification  of                               
multiple,  spurious  bounding  boxes  for  a  single  object.  It  converges  to  a  value  of  0.57 56,85 .                               
Bounding  box  loss  measures  disagreement  between  the  ground  truth  location  of  bounding                         
boxes  with  the  regression  produced  by  the  deep  learner.  Finally,  classification  loss  measures                           
how   well   correctly   identified   objects   are   assigned   classes.   
We  searched  the  hyperparameter  space  defined  by  the  cross-product  of  different  settings  for                           
the  learning  rate,  momentum,  decay,  number  of  epochs  per  grade,  IoU,  threshold  𝛕  and  various                               
freezing  rates  ( Figure  1H )  where  boldface  font  denotes  the  choice  of  parameters  for  the  final                               
FCOS.  Throughout  these  experiments,  the  800  ⨉  800  input  images  were  subjected  to                          
augmentation  (random  multi-scale  flipping).  Other  parameters  included  1000  warmup                   
iterations,  a  warmup  ratio  of  ⅓  and  an  SGD  optimizer  with  grad  clipping.  The  mAP  and  three                                   
loss  functions  described  above  were  used  to  initially  judge  the  quality  of  the  classifier.  The                               
code   from   running   the   FCOS   and   interpreting   results   is   depicted   in    Supplemental   Figure   7 .   
When  investigating  differences  in  performance  of  a  classifier  between  the  test  and  validation                           
sets,  we  manually  curated  a  subset  of  test  images  for  each  entry  in   Table  1A  and   B  in  a                                       
manner  to  ensure  that  at  least  100  cells  were  labelled  (with  the  exception  of  the  first  two                                   
entries  of  Table  1A  where  there  were  too  few  cells).  Then  we  built  a  contingency  table  where                                   
rows  correspond  to  correct  and  incorrect  predictions,  and  columns  correspond  to  the  test  and                             
validation  dataset.  A  𝟀 2   test  was  used  with  the  null  hypothesis  of  no  difference  between  the                                 
overall   number   of   correct   predictions   in   the   test   and   validation   sets.     
6.   Variational   autoencoder   (VAE)   for   unsupervised   analyses   

The  variational  autoencoder  was  constructed  using  the  Keras  for  R  (version  2.4)  package 86 .                           
Supplemental  Figure  5  depicts  the  architecture  of  the  model.  Briefly  here,  the  input  to  the                               
network  is  a   pixel  image.  The  image  is  subjected  to  a  series  of  convolutional  layers        28 ⨉ 128  1                          
with  a  kernels,  64  filters  and  strides  that  successively  transformation  the  representation,       ⨉ 5  5                    
followed  by  a  flattening  operation  that  reshapes  the  representation  into  a  real  vector,                        62, 44 2 1    
before  a  final  reduction  to  a  two  dimensional  latent  space.  Layers  for  mean,  the  score                           z      logz  
and  for  decoding  all  follow  standard  VAE  procedures  (see  code  for  details).  Training  used  the                               
wildtype  Varasana  training  and  validation  sets  in  batch  sizes  of   across  epochs.  The                      001     02    
test  set  objects,  which  include  the  genetically  modified   C.  albicans  variants  from  Varasana,                           
were  not  used  in  training.  In  particular,  we  extracted  each  (ground  truth)  bounding  box  across                               
these  files  and  reshaped  the  images  to  size  .  We  used  a  β=0.4  parameter  to                  28 ⨉ 128  1              
down-weight  the  Kullbach-Leibler  portion  of  the  loss  function 87 .  It  is  straightforward  to                         
visualize   the   resultant   two   dimensional   latent   space   with   a   scatterplot.   

7.   Generative   Adversarial   Networks   

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.10.445299doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?E4eIDk
https://www.zotero.org/google-docs/?ZLILgH
https://www.zotero.org/google-docs/?gDg98Y
https://www.zotero.org/google-docs/?O4vQl9
https://doi.org/10.1101/2021.06.10.445299
http://creativecommons.org/licenses/by/4.0/


  
  

We  follow  the  approach  from  Liu  et  al. 68  to  build  unconditional  GAN  images.  This  approach                               
requires  computational  resources  that  are  accessible  to  most  labs  and  requires  few  training                           
samples,  a  feature  important  for  our  setting  here.  The  model  is  particularly  amenable  to  the                               
disentanglement  procedures  utilized  below.   Supplemental  Figure  6A,  B  depict  the  structure  of                         
the  Generator  and  Discriminator  respectively.  We  extended  the  Pytorch-based  code  available                       
from  the  authors 88 .  The  input  used  for  training  corresponds  to  the  ground  truth  bounding                             
boxes  of  the  training  and  validation  datasets,  reshaped  as image  as  was  done  for                  281  128  ⨉          
the  VAE  described  in  Methods  6.  Here  we  used  a  shift  predictor  and  deformator  learning  rate                                 
of   0.0001,   with   2000   steps   in   batches   of   size   4.   

We  follow  the  framework  of  Creswell  and  Bharath 69  to  build  trajectories  between  two  (real)                             
target  images.  Here  however  we  opted  to  use  the  Learned  Perceptual  Image  Patch  Similarity                             
(LPIPS)  metric  as  the  loss  function 70 .  The  core  idea  is  to  find  both  “real”  target  images  in  the                                     
Generator’s  latent  space.  This  requires  a  so-called  inversion  which  we  perform  using                         
Algorithm  INFER  of  Creswell  and  Bharath.  Then  we  use  linear  interpolation  between  these  two                             
points  in  the  latent  space  and  reconstruct  visual  representations  at  user  defined  points  along                             
this   path.   
  

8.   Anomaly   detection     
Anomaly  detection  proceeds  using  the  framework  from  Schlegl  et  al. 89  but  replacing  their                           
residual  and  discriminator  loss  with  the  Learned  Perceptual  Image  Patch  Similarity  (LPIPS)                         
metric   for   estimating   the   similarity   between   two   images 70 .   Our   approach   proceeds   as   follows.      

1. a.   Each   object   in   a   image   file   is   bounded   manually,   or;   
b.  Candescence  is  used  to  automatically  regress  bounding  boxes  for  the  objects  in  the                             
target   image   file.   

2. For  each  target  object  (that  is,  for  each  bounding  box  or  patch)  ,  we  find  its  optimal                          T           
inversion   in  the  latent  space  of  the  generator  G  using  the   algorithm    z                       NFER(T , G)I      
from  Creswell  and  Bharath  modified  to  use  the  LPIPS  similarity  metric.  Here is  a                          (z)G    
synthetic   image.   

3. Find  the  nearest  real  neighbour   of   across  all  images   in  the  training  set            d     (z)G         d           D
under   the   LPIPS   metric.      

4. The   anomaly   score   is   then   defined   as   follows:   

 (T  | G, D)  ℒ(G(z), T )   min ℒ(G(z), d)    A   =     +   d ∈D    

where  is  the  set  of  training  images  and  is  the  LPIPS  function  between  two    D                ℒ            
images.   

With  respect  to  1b,  we  remark  that  the  performance  of  Candescence  was  not  severely                             
reduced  when  given  an  image  with  non-canonical  morphologies  and  in  this  setting  the                           
classification  returned  by  the  FCOS  is  not  used.  Therefore,  this  automated  approach  should                           
suffice  in  most  scenarios,  unless  the  change  in  morphology  is  very  large.  However,  when  the                               
change   in   morphology   is   very   obvious,   we   will   not   need   a   sensitive   algorithm   to   detect   it.   
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Figure  1.  A.  An  example  of  a  typical  DIC  image  in  Labelbox,  a  learning-set  creation  tool                                 
for  group  annotation.  The  color  codes  for  bounding  boxes  described  in  panel   B.  The                             
artifact  class  is  used  to  bound  imperfections  and  technical  artifacts  in  the  images,                           
whereas  the  unknown  class  is  used  to  bound  cells  for  which  we  could  not  judge                               
morphology.   C.  Labelling  of  an  image  that  is  enriched  for  pseudohyphae.  Note  that  the                             
overall  intensity  of  our  images  are  not  required  to  be  the  same.   D.  Given  the  size  and                                   
complexity  of  the  filamentous  forms,  we  annotated  each  hyphae  or  pseudohyphae  using                         
three  classes.   D,  E.  H-start  and  P-start  are  intended  to  label  only  the  “start”  of  the  hyphae                                   
or  pseudohyphae.  Since  junctions  are  different  between  hyphae  and  pseudohyphae,  we                       
labelled  them  with  the  H-  and  P-junction  classes.  Finally  we  bounded  the  entire                           
filamentous  object  with  a  rectangle;  note  that  such  bounding  boxes  overlap  with                         
surrounding  cells.   F.  Our  system  is  built  upon  the  FCOS  software  with  structure                           
unaltered  from  Tian  et  al.  (2019). G.  The  Varasana  learning  set  is  first  partitioned  into                               
three  components  (training,  validation,  and  testing).  Then  both  validation  and  testing  are                         
split  into  six  grades.  The  grades  are  ordered  from  white  to  hyphae.  When  an  image                               
appears  first  in  grade  i,  it  is  also  included  in  all  grades  j  >  i.  The  test  set  contains                                      
examples  of  both  wildtype  SC5314  and  SN148a  cells,  but  also  a  collection  of  genetic                             
and  environmental  perturbations  that  induced  abnormal   C.  albicans  morphologies.   H.                     
Using  the  Varasana  learning  set,  we  performed  a  grid  search  across  several                         
hyperparameters  (n=~30K  combinations).  Bold  face  indicates  the  combination  of                   
hyperparameters   that   had   the   best   performance.   
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Figure  2.  Representative  images  of  the  ground  truth  in  the  Varasana  validation  set  (left)                             
each  of  which  consists  of  a  bounding  box  around  the  object  and  a  class  label,  and  the                                   
predictions  made  by  the  FCOS  Candescence  (right)  which  also  have  a  score  between  0                             
and  1  from  the  softmax  layer  of  the  FCOS  representing  the  strength  of  belief  in  the                                 
classification.  Panel  A   depicts  an  image  we  found  difficult  to  label  as  the  objects  have                               
both  pseudohyphal  and  hyphal  properties.  Nevertheless,  Candescence  recapitulates  our                   
classifications.  Note  that  if  an  object  is  identified  as  hyphae,  the  junctions  and  start  are                               
also  labelled  as  H;  this  is  also  true  for  pseudohyphae.  This  suggests  that  Candescence                             
is  learning  to  classify  not  only  on  the  image  but  also  as  a  function  of  the  predicted  labels                                     
of  the  same  object.  The  image  in  Panel  B  contains  a  diverse  collection  of  classes.  Note                                 
that  we  labelled  gray-like  only  by  their  size  and  “texture”  (smaller  but  rectangular  like                             
opaque,  and  more  gaunt  than  white  cells).  Overall,  these  categories  witnessed  the                         
highest  number  of  classification  errors.  Candescence  predicts  well  even  for  highly                       
dense   and   diverse   images   such   as   Panel    C .   
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Figure  3.   A.  Representative  images  chosen  from  the  complete  collection  in                       
Supplemental  Figure  3  of  all  false  positive  object  identifications  from  Candescence.  This                         
set  of  hallucinations  is  subdivided  by  the  class  label  returned  by  Candescence.  X                           
indicates  that  we  truly  are  not  able  to  see  an  object  (a  true  hallucination)  and  M                                 
indicates  that  Candescence  was  indeed  correct  to  predict  a  bounding  box  at  that                           
location  (missed  by  the  human  annotators)  but  its  subsequent  classification  disagrees                       
with  our  criteria.  Subimages  lacking  an  annotation  indicate  that  Candescence  correctly                       
identified  and  classified  the  object,  which  represents  a  human  error.  Panel  B  depicts                           
three  partial  images  with  false  negatives  (“blindspots”)  labelled  with  red  boxes.                       
Unannotated  cells  in   (i-iii)  were  correctly  handled  by  Candescence  and  their  bounding                         
boxes  have  been  removed  for  clarity.   (i)  This  is  an  example  of  a  recurrent  problem  where                                 
the  probability  from  the  softmax  is  distributed  over  two  or  more  labels  (e.g.  white  and                               
budding  white)  presumably  because  it  has  difficulty  to  guess  whether  they  are  only                           
touching  versus  still  attached.  The  shared  probability  causes  both  to  fall  below  our                           
threshold  τ.   (ii)  Although  Candescence  performs  well,  blindspots  arise  presumably  due                       
to  the  dense  packing  of  cells.   (iii)  Our  strategy  during  labelling  was  to  leave  cells  that                                 
were  partially  outside  of  the  field  of  view  unlabelled.  Such  edge  effects  cause  some                             
problems  and  are  often  predicted  as  Unknown.  Lastly,  bounding  boxes  for  large                         
filamentous   C.  albicans  are  sometimes  missed,  especially  if  other  cells  are  within  the                           
vicinity.  Panel  C  depicts  the  confusion  matrix  for  Candescence  with  columns                       
corresponding  to  ground  truth  classifications  and  rows  corresponding  to  Candescence                     
predictions.   
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Figure  4  depicts  a  scatterplot  of  the  two  dimensional  latent  space  of  the  VAE  on  the                                 
training  and  validation  datasets.  The  junction,  hyphae,  pseudohyphae,  and  unknown                     
class  have  been  removed  from  the  training  and  visualization  of  the  VAE.  The  V1                             
dimension  of  the  VAE  is  strongly  associated  with  light  intensity  of  the  image.  The                             
vertical  V2  dimension  captures  other  variability  primarily  related  to  size  and  texture  of                           
the   cells.      
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Figure  5   A.   For  each  pair  of  images,  the  left  is  a  synthesized  image  produced  by  our                                   
model,  and  the  right  image  is  the  image  found  from  the  real  training  data  that  is  its                                   
nearest  neighbour  under  the  LPIPS  metric.  B.  Three  separate  trajectories.  Here  the  left                           
and  right  most  images  correspond  to  real  images  from  the  training  data.  The  sequence                             
of  images  at  points to  are  produced  by  a  linear  interpolation  between  the  real          s1   s8                  
images   in   the   generator’s   latent   space   in   the   GAN.      
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Figure  6   A .  Example  of  anomaly  detection  using  a   RHA1  GOF/ BCR1  null  colony  (UID                             
230  of  type  13).  Panel  B  enlarges  a  series  of  bounding  boxes  predicted  by  Candescence                               
with  their  associated  anomaly  score.  The  histogram  of  panel   C   compares  the                         
distribution  of  anomaly  scores  between  all  images  of  type  13  versus  type  30,  a                             
collection  of  normal  appearing  pseudohyphal  and  hyphal  cells.  There  is  a  small  but                           
statistically  significant  enrichment  of  cells  from  the   RHA1  GOF/ BCR1  null  colony  with                         
elevated   anomaly   score   differences   (Kolmogorov-Smirnoff   test,   p   <   0.01).   
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Table  1.   Summary  of  the  Varasana  learning  set  from  Supplemental  Table  1.  An  A                             
indicates  that  some  images  from  this  type  of  colony  were  used  in  the  training  and                               
validation  datasets,  and  B  indicates  that  some  images  were  used  in  the  test  set.  All                               
genetic  perturbations  were  performed  in  SC5314  cells.  In  the  Serum  column,  a  No                           
indicates  only  YPD  media  was  used,  otherwise  the  percent  serum  added  to  YPD  is                             
recorded.  RM  indicates  room  temperature.  The  significance  column  indicates  the  results                       
of  applying  the  proportionality  test  to  determine  if  there  was  a  difference  in  performance                             
between  the  validation  and  test  set.  Here  *  and  **  indicate  p-values  below  0.05  and  0.01                                 
respectively  and  --  indicate  a  p-values  >  0.05.  In  cases  where  a  p-value  is  provided  for  a                                   
type  A  colony,  only  images  that  were  omitted  from  the  training  and  validation  datasets                             
were   used.   
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Table  2.  Exploration  of  the  performance  of  the  FCOS  in  the  grid  search.  Panel  A  provides                                 
the  relevant  summary  statistics  for  blindspots,  hallucinations  and  classifications.  With   a                       
posterior   analysis  and  correction  of  the  hallucinations,  performance  was  recalculated                     
and  reported  in  the  Adj  Sens  (adjusted  sensitivity)  column.  True  positives  correspond  to                           
a  correctly  identified  object  that  is  also  correctly  classified.  In  an  FCOS,  all  pixels  that  are                                 
not  part  of  a  bounding  box  and  which  are  not  predicted  to  be  part  of  a  bounding  box  are                                       
true  negatives.  False  positives  are  hallucinations  and  incorrect  classifications.  False                     
negatives  are  blindspots  only.   Panel  B  reports  the  blindspots  per  class  for  the  best                             
performing   classifier   at   τ=0.25.      
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Supplemental  Figure  1.  Description  of  the  cumulative  curriculum  learning  set.  Panel  A                         
depicts  the  frequency  of  the  different  classes  across  the  six  grades  in  both  training  and                               
validation.  An  image  is  part  of  all  subsequent  grades  once  it  appears  for  the  first  time.                                 
Images  are  included  in  the  training  and  validation  sets  at  a  ratio  of  7:3.  Panel  B  provides                                   
histograms  of  the  number  of  objects  (cells,  junctions,  unknown,  artifacts)  per  image                         
across  all  six  grades.  The  maximum  number  of  objects  in  any  image  was  97,  although                               
we   note   that   several   test   set   images   exceeded   this   bound   (not   shown   here).   
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Supplemental  Figure  2.  The  curves  for  the  three  FCOS  notions  of  loss  across  the  six                               
grades  for  the  chosen  Candescence  classifier  (τ=0.25)  from  Table  2.  Although  the                         
number  of  iterations  (x-axis)  varies  across  the  grades  because  of  differences  in  the  size                             
of  the  learning  set  for  each  grade,  in  all  cases  this  translates  to  a  total  of  5,000  epochs.                                     
From  this,  an  epoch  number  of  1,000  was  chosen,  as  it  appears  that  convergence  has                               
been  reached  after  one-fifth  of  the  epochs.  It  is  well-established  that  the  center-ness                           
loss   converges   to   ~0.57.   All   other   losses   are   negligibly   above   0.     
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Supplemental  Figure  3.   A  compendium  of  all  hallucinations  (false  positive  object                       
predictions)  produced  by  Candescence.  As  in  Figure  3(i),  X  indicates  that  we  truly  are                             
not  able  to  see  an  object  (a  true  hallucination)  and  M  indicates  that  Candescence  was                               
indeed  correct  to  predict  a  bounding  box  at  that  location  (missed  by  the  human                             
annotators)  but  its  subsequent  classification  disagrees  with  our  criteria.  Subimages                     
lacking  an  annotation  indicate  that  Candescence  correctly  identified  and  classified  the                       
object,   which   represents   a   human   error.   
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Supplemental  Figure  4.  Exploration  of  the  performance  of  Candescence  on  the  test  set.                           
Each  panel  refers  to  one  of  ~1,000  test  set  images  with  the  UID  available  in                               
Supplemental   Table   1.     
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Supplemental  Figure  5  sketches  the  general  design  of  our  Keras  R-based  VAE.  Input  is  a                               
128x128  subimage  from  the  original  images  of  the  training  and  validation  datasets.  We                           
opted   here   for   a   two-dimensional   latent   space   for   ease   of   visualization.   
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Supplemental  Figure  6  sketches  the  general  design  of  our  Generative  Adversarial                       
Network  (GAN)  trained  on  subimages  as  per  the  VAE.  This  design  remains  unchanged                           
from  the  original  presentation  in  Liu  et  al.  (2021),  although  hyperparameters  were  fit                           
using   Varasana.     
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Supplemental  Figure  7.  A  description  of  the  source  code  for  (src/4-fcos-perf).  The                         
routines  start  with  a  classifier  that  has  been  learnt  via  experiment  src/3-curriculum,  and                           
use  this  to  measure  its  performance  in  different  ways  on  the  validation  and  test  set.  The                                 
scripts  are  written  in  Python  or  R,  and  make  use  of  the  FCOS  implementation  provided                               
by   MMDETECTION.   
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Supplemental  Table  1.   The  Varasana  learning  set.  UID  is  a  distinct  integer  for  each  file.                               
Type  corresponds  to  a  single  colony  that  was  photographed  under  the  microscope  and                           
repetition  refers  to  individual  images  taken  of  that  colony.  Gene  target  1-3  describe  the                             
specific  genetic  modifications.  ON  under  the  Time  column  indicates  overnight  for  24                         
hours  total.  Columns  S-AM  provide  the  (manually  assigned)  number  of  cells  per  class                           
per   image   across   the   training   and   validation   datasets.   
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