
Building Applications for Interactive Data Exploration in
Systems Biology

Bjørn Fjukstad
Department of Computer Science
UiT The Arctic University of

Norway

Vanessa Dumeaux
Department of Biology
Concordia University

Karina Standahl Olsen
Department of Community

Medicine
UiT The Arctic University of

Norway

Eiliv Lund
Department of Community

Medicine
UiT The Arctic University of

Norway

Michael Hallett
Department of Biology
Concordia University

Lars Ailo Bongo
Department of Computer Science
UiT The Arctic University of

Norway

ABSTRACT

The significant increase in the rate of data generation by the
systems biology community creates a need for interactive
exploration tools to explore the resultant datasets. Such tools
need to combine advanced statistical analyses, prior knowl-
edge from biological databases, and interactive visualizations
with intuitive user interfaces. Each specific research question
potentially requires a specialized user interface and visualiza-
tion methods. Although some features are application-specific,
the underlying components of the data analysis tool can be
shared and reused.

Our approach for developing data exploration tools in sys-
tems biology builds on the microservice architecture that
separates an application into smaller components which can
communicate using language-agnostic protocols. We show
that this design is well suited for bioinformatics applica-
tions where different tools written in different languages by
different research groups is the norm. Packaging each ser-
vice in a software container enables re-use and sharing of
key components between applications, reducing development,
deployment, and maintenance time.

We demonstrate the viability of our approach through a
web application, entitled MIxT blood-tumor, for exploring
and comparing transcriptional profiles from blood and tumor
samples in breast cancer patients. The application integrates
advanced statistical software, up-to-date information from
biological databases, and modern data visualization libraries.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ACM-BCB’17, August 20-23, 2017, Boston, MA, USA.

© 2017 Copyright held by the owner/author(s). Publication rights
licensed to ACM. 978-1-4503-4722-8/17/08. . . $15.00
DOI: http://dx.doi.org/10.1145/3107411.3107481

KEYWORDS

Interactive data exploration, software containers, visualiza-
tion, microservices, systems biology, breast cancer.

INTRODUCTION

In recent years the biological community has generated an un-
precedented amount of data. While the cost of data collection
has drastically decreased, data analysis continue to represent
a large fraction of the total cost of these studies.[9] Data
analysis tools, especially those designed specifically for the
project at hand, provide clear benefit to the human experts
who are interpreting data and deriving results.

Often in systems biology studies, the ability to explore
newly generated data relative to prior knowledge located
in third-party databases and software systems is key.
This includes, for example, entities such as the Gene
Ontology (GO),1 the Kyoto Encyclopedia of Genes and
Genomes (KEGG),2 and the Molecular Signatures Database
(MSigDB)3 that together catalog the function of nearly every
gene, gene product, pathway or cellular process. These tools,
and most bioinformatics databases in general, offer interfaces
for data retrieval.

Data analysis in systems biology is greatly reliant on pro-
gramming languages especially tailored to these domains, pro-
viding easy direct access to specific algorithms and statistical
routines. The R statistical programming language provides
developers open access to thousands of libraries through
repositories such as CRAN4 or Bioconductor5. Similarly,
other languages such as Python and Go have bioinformatic
extensions including BioPython[2] and biogo[6] respectively,
providing domain specific routines. Although tremendously
helpful, different tools and languages are used in different
domains of systems biology for many reasons. This creates a

1geneontology.org.
2kegg.jp.
3software.broadinstitute.org/gsea/msigdb.
4cran.r-project.org.
5bioconductor.org.

geneontology.org
kegg.jp
software.broadinstitute.org/gsea/msigdb
cran.r-project.org
bioconductor.org

need for novel approaches to integrate the different libraries
between the programming languages and tools.

A microservice architecture structures an application into
small reusable, loosely coupled parts. These communicate via
lightweight programming language-agnostic protocols such
as HTTP, thus making it possible to write single applica-
tions in multiple programming languages. This way the most
suitable programming language is used for each specific part.
To build a microservice application, developers bundle each
service in a software container. Containers are built from
configuration files which describe the operating system, soft-
ware packages and their associated versions. Several software
container implementations exist including Rkt6 but Docker,7

is perhaps the most broadly used. Initiatives such as BioCon-
tainers8 now provide containers pre-installed with different
bioinformatics tools. While the enabling technology is avail-
able, the microservices approach is not yet widely adopted
in bioinformatics.[11]

From our experience we identified a set of components
and features that are central to building data exploration
applications.

(1) A low-latency language-independent approach for
integrating, or embedding, statistical software, such
as R, directly into a data exploration application.

(2) Low latency language-independent interface to online
reference databases in biology that users can query
to explore analyses.

(3) A simple method for deploying and sharing the com-
ponents of an application between projects.

In this paper, we describe a novel approach for build-
ing data exploration applications in systems biology via a
sample web application, MIxT (Matched Interactions across
Tissues) using high-throughput gene expression profiles of
breast cancer tumor data with matched profiles from the
patients blood.

METHODS

In this section we first motivate our microservice approach
based on our experiences developing the MIxT web applica-
tion. We describe the process from initial data analysis to the
final application, highlighting the importance of language-
agnostic services to facilitate the use of different tools in
different parts of the application. We then generalize the
ideas to a set of principles and services that can be reused
and shared between applications, and show their design and
implementation.

Motivating Example

The aim of the Matched Interactions Across Tissues (MIxT)
study was to identify genes and pathways in the primary
breast tumor that are tightly linked to genes and pathways
in the patient blood cells.[3] We generated and analyzed ex-
pression profiles from blood and matched tumor cells in 173

6coreos.com/rkt.
7docker.com.
8biocontainers.pro.

breast cancer patients included in the Norwegian Women
and Cancer (NOWAC) study. The MIxT analysis starts by
identifying sets of genes tightly co-expressed across all pa-
tients in each tissue. Each group of genes or modules were
annotated based on a priori biological knowledge about gene
functionality. Focus was placed on the relationships between
tissues by asking if specific biologies in one tissue are linked
with (possibly distinct) biologies in the second tissue, and
this within different subgroup of patients (i.e. subtypes of
breast cancer).

We built an R package, mixtR,9 with the statistical meth-
ods and static visualizations for identifying associations be-
tween modules across tissues. To make the results more easily
accessible we built a web application that interfaces with the
R package, but also online databases to retrieve relevant meta-
data. To make it possible to easily update or re-implement
parts of the system without effecting the entire application,
it was developed using a microservice architecture. The soft-
ware containers allowed the application to be deployed on
a wide range of hardware, from local installations to cloud
systems.

Design Principles

Our experience can be generalized into the following design
principles for building applications in bioinformatics:

Principle 1: Build applications as collections of language-
agnostic microservices. This enables re-use of components
and does not enforce any specific programming language
on the user interfaces or the underlying components of the
application.

Principle 2: Use software containers to package each ser-
vice. This has a number of benefits: it simplifies deployment,
ensures that dependencies and libraries are installed, and
simplifies sharing of services between developers.

Microservice Design and Implementation

In the rest of the section we describe how we designed and
implemented two microservices in Kvik[4] which we later
used to build the MIxT web application.

Compute Service. The main goal of a data exploration appli-
cation in systems biology is to help users discover interesting
patterns in a biological dataset. Because of the complexity
of biological data and analyses, we need specialized software
to help find these patterns. Because these tools are built
to provide specialized analyses, they often don’t provide a
reusable interface outside the programming environment they
are built in.

We have built a compute service that provides an open
interface directly to the R programming language, thus pro-
viding access to a wealth of algorithm and statistical analysis
packages that exists within the R ecosystem. Application
developers can use the compute service to execute specialized
analyses and retrieve results either as plain text or binary
data such as plots. By interfacing directly with R, developers

9Available online at github.com/vdumeaux/mixtR.

coreos.com/rkt
docker.com
biocontainers.pro
github.com/vdumeaux/mixtR.

can modify input parameters to statistical methods directly
from the user-facing application.

The compute service offers three main operations to in-
terface with R: i) to call a function with one or more input
parameters from an R package, ii) to get the results from
a previous function call, and iii) a catch-all term that both
calls a function and returns the results. We use the same
terminology as OpenCPU[8] and have named the three opera-
tions Call, Get, and RPC respectively. These three operations
provide the necessary interface for applications to include
statistical analyses in the applications.

The compute service is implemented as an HTTP server
that communicates with a pre-set number of R processes to
execute statistical analyses. At initiation of the compute ser-
vice, a user-defined number of R worker sessions are launched
for executing analyses (default is 5). The compute service
uses a round-robin scheduling scheme to distribute incoming
requests to the workers. We provide a simple FIFO queue
for queuing of requests. The compute service also provides
the opportunity for applications to cache analysis results to
speed up subsequent calls.

Database Service. To interpret data, experts regularly ex-
ploit prior knowledge via database queries and the primary
scientific literature. There are a wealth of online databases,
some of which provide open APIs in addition to web user
interfaces that application developers can make use of. While
the databases can provide helpful information, there are some
limitations associated with their integration into interactive
data exploration applications: i) the APIs are not fast enough
to use in interactive applications where the application has
to perform multiple database queries, ii) some databases put
restrictions on the number of database queries, and iii) there
is no uniform way for storing additional database metadata
to identify database versions and query parameters.

To alleviate application developers of these challenges, we
built an database service that provides a solution to the three.
The service provides low latency, minimizes the number of
queries to remote databases, and stores additional metadata
to capture query parameters and database information. The
database service provides an open HTTP interface to biologi-
cal databases for retrieving meta-data on genes and processes.
We currently have packages for interfacing with E-utilities,10

MSigDB, HGNC, and KEGG.
Both the compute and the databases service in Kvik build

on the standard net/http package in the Go programming
language.11 The database service use the gocache12 package
to cache any query to an online database. In addition we
deploy each service as Docker containers.13

10eutils.ncbi.nlm.nih.gov.
11golang.org
12github.com/fjukstad/gocache.
13Available at hub.docker.com/r/fjukstad/kvik-r and hub.docker.com/
r/fjukstad/db.

MATCHED INTERACTIONS ACROSS
TISSUES (MIXT)

We show the viability of the microservices approach in Kvik
by describing the MIxT web application for exploring and
comparing transcriptional profiles from blood and tumor
samples. We conduct an initial evaluation to illustrate that
we can built interactive applications using the microservices
provided by Kvik.

Analysis Tasks

The web application provides functionality to perform six
data analysis tasks (A1-A6):

A1: Explore co-expression gene sets in tumor and blood
tissue. Users can explore gene expression patterns together
with clinicopathological variables (e.g. patient or tumor grade,
stage, age) for each module. In addition we enable users to
study the underlying biological functions of each module by
including gene set analyses between the module genes and
known gene sets.

A2: Explore co-expression relationships between genes.
Users can explore the co-expression relationship as a graph
visualization. Here genes are represented in the network with
nodes and edges represent statistically significant correlation
in expression between the two end-points.

A3: Explore relationships between modules from each
tissue. We provide two different metrics to compare modules,
and the web application enables users to interactively browse
these relationships. In addition to providing visualizations
the compare modules from each tissue, users can explore the
relationships, but for different breast cancer patient groups.

A4: Explore relationships between clinical variables and
modules. In addition to comparing the association between
modules from both tissues, users also have the possibility to
explore the association with a module and a specific clinical
variable. It is also possible to explore the associations after
first stratifying the tumors by breast cancer subtype (an
operation that is common in cancer related studies to deal
with molecular heterogeneity).

A5: Explore association between user-submitted gene lists
and computed modules. We want to enable users to explore
their own gene lists to explore them in context of the co-
expression gene sets. The web application must handle up-
loads of gene lists and compute association between the gene
list and the MIxT modules on demand.

A6: Search for genes or gene lists of interest. To facilitate
faster lookup of genes and biological processes, the web appli-
cation provides a search functionality that lets users locate
genes or gene lists and show association to the co-expression
gene sets.

Design and Implementation

From these six analysis tasks we designed and implemented
MIxT as a web application that integrates statistical analyses
and information from biological databases together with inter-
active visualizations. Figure 1 shows the system architecture
of MIxT which consists of three parts i) the web application

eutils.ncbi.nlm.nih.gov
golang.org
github.com/fjukstad/gocache.
hub.docker.com/r/fjukstad/kvik-r
hub.docker.com/r/fjukstad/db
hub.docker.com/r/fjukstad/db

itself containing the user-interface and visualizations; ii) the
compute service performing the MIxT analyses developed in
an R package, delivering data to the web application; and
iii) the database service providing up-to-date information
from biological databases. Each of these components run
within Docker containers making the process of deploying
the application simple.

Figure 1: The architecture of the MIxT system. It
consists of a web application, the hosting web server,
a database service for retrieving metadata and a
compute service for performing statistical analysis.
Note that only the web application and the R pack-
age are specific to MIxT, the rest of the components
can be reused in other applications.

We structured the MIxT application with a separate view
for each analysis task. To explore the co-expression gene sets
(A1), we built a view that combines both static visualizations
from R together with interactive tables for gene overlap
analyses. Figure 2 shows the web page presented to users
when they access the co-expression gene set ’darkturquoise’
from blood. To explore the co-expression relationship between
genes (A2) we use an interactive graph visualization build
with Sigmajs14. We have built visualization for both tissues,
with graph sizes of 2705 nodes and 90 348 edges for the
blood network, and 2066 nodes and 50 563 edges for the
biopsy network. To visualize relationships between modules
from different tissues (A3), or their relationship to clinical
variables (A4) we built a heatmap visualization using the
d315 library. We built a simple upload page where users can
specify their gene sets (A5). The file is uploaded to the web
application which redirects it to the compute service that
runs the analyses. Similarly we can take user input to search
for genes and processes (A6).

The web application is hosted by a custom web server.
This web server is responsible for dynamically generating the
different views based on data from the statistical analyses
and biological databases, and serve these to users. It also

14sigmajs.org.
15d3js.org.

Figure 2: MIxT module overview page. The top left
panel contains the gene expression heatmap for the
module genes. The top right panel contains a table
of the genes found in the module. The bottom panel
contains the results of gene overlap analyses from the
module genes and known gene sets from MSigDB.

serves the different JavaScript visualization libraries and style
sheets.

Evaluation

To investigate if it is feasible to implement parts of an appli-
cation as separate services, we evaluate the response times
for a set of queries to each of the two supporting services.

To evaluate the database service we measure the query
time for retrieving information about a specific gene with
and without caching.16 This illustrates how we can improve
performance in an application by using a database service
rather than accessing the database directly. We use a AWS
EC2 t2.micro17 instance to host and evaluate the database
service. The results in Table 1 confirm a significant improve-
ment in response time when the database service caches the
results from the database lookups. In addition by serving the
results out of cache we reduce the number of queries to the
online database down to one.

Table 1: Time to retrieve a gene summary for a sin-
gle gene, comparing different number of concurrent
requests.

1 2 5 10 15

No cache 956ms 1123ms 1499ms 2147ms 2958ms

Cache 64ms 64ms 130ms 137ms 154ms

We evaluate the compute service by running a bench-
mark consisting of two operations: first generate a set of 100

16More details online at github.com/fjukstad/kvik/tree/master/db/
benchmark.
17See aws.amazon.com/ec2/instance-types for more information about
AWS EC2 instance types.

sigmajs.org
d3js.org
github.com/fjukstad/kvik/tree/master/db/benchmark
github.com/fjukstad/kvik/tree/master/db/benchmark
aws.amazon.com/ec2/instance-types

random numbers, then plot them and return the resulting
visualization.18 We use two c4.large instances on AWS EC2
running the Kvik compute service and OpenCPU base docker
containers. The servers have caching disabled. Table 2 shows
the time to complete the benchmark for different number of
concurrent connections. We see that the compute service in
Kvik performs better than the OpenCPU19 alternative. We
believe that speedup is because we keep a pool of R processes
that handle requests. In OpenCPU a new R process is forked
upon every request that results in any computation executed
in R. Other requests such as retrieving previous results do
not fork new R processes.

Table 2: Time to complete the benchmark with dif-
ferent number of concurrent connections.

1 2 5 10 15

Kvik 274ms 278ms 352ms 374ms 390ms

OpenCPU 500ms 635ms 984ms 1876ms 2700ms

RELATED WORK

In this section we discuss different methods that facilitates
building applications using a microservices approach.

Integrate Statistical Analyses

OpenCPU is a system for embedded scientific computing and
reproducible research.[8] Similar to the compute service in
Kvik, it offers an HTTP API to the R programming language
to provide an interface with statistical methods. It allows
users to make function calls to any R package and retrieve
the results in a wide variety of formats such as JSON or
PDF. OpenCPU provides a JavaScript library for interfacing
with R, as well as Docker containers for easy installation,
and has been used to build multiple applications.20. The
compute service in Kvik follows many of the design patterns
in OpenCPU. Both systems interface with R packages using
a hybrid state pattern over HTTP. Both systems provide
the same interface to execute analyses and retrieve results.
Because of the similarities in the interface to R in Kvik we
provide packages for interfacing with our own R server or
OpenCPU R servers.

Shiny is a web application framework for R21 It allows
developers to build web applications in R without having to
have any knowledge about HTML, CSS, or Javascript. While
it provides an easy alternative to build web applications on
top of R, it cannot be used as a service in an application that
implements the user-interface outside R.

Renjin is a JVM-based interpreter for the R programming
language.[1] It allows developers to write applications in Java
that interact directly with R code. This makes it possible to

18More details at github.com/fjukstad/kvik/tree/master/r/
benchmarks.
19Built using the opencpu-server Docker image.
20opencpu.org/apps.html.
21shiny.rstudio.com.

use Renjin to build a service for running statistical analyses
on top of R. One serious drawback is that existing R packages
must be re-built specifically for use in Renjin.

Visualization

Cytoscape is an open source software platform for visualizing
complex networks and integrating these with any type of
attribute data.[10] Through a Cytoscape App, cyREST, it al-
lows external network creation and analysis through a REST
API[7], making it possible to use Cytoscape as a service. To
bring the visualization and analysis capabilities to the web
applications the creators of Cytoscape have developed Cy-
toscape.js22, a JavaScript library to create interactive graph
visualizations. Another alternative for biological data visual-
ization in the web browser is BioJS It provides a community-
driven online repository with a wide range components for
visualizing biological data contributed by the bioinformat-
ics community.[5] BioJS builds on node.js23 providing both
server-side and client-side libraries. In MIxT we have opted
to build the visualizations from scratch using sigma.js and
d3 to have full control over the appearance and functionality
of the visualizations.

Kvik and Kvik Pathwys

We have previously built a system for interactively exploring
gene expression data in context of biological pathways.[4]
Kvik Pathways is a web application that integrates gene
expression data from the Norwegian Women and Cancer
(NOWAC) cohort together with pathway images from the
Kyoto Encyclopedia of Genes and Genomes (KEGG). We
used the experience building Kvik Pathways to completely re-
design and re-implement the R interface in Kvik. From having
an R server that can run a set of functions from an R script,
it now has a clean interface to call any function from any R
package, not just retrieving data as a text string but in a
wide range of formats. We also re-built the database interface,
which is now a separate service. This makes it possible to
leverage its caching capabilities to improve latency. This
transformed the application from being a single monolithic
application into a system that consists of a web application
for visualizing biological pathways, a database service to
retrieve pathway images and other metadata, and a compute
service for interfacing with the gene expression data in the
NOWAC cohort. We could then re-use the database and the
compute service in the MIxT application.

DISCUSSION

There are different arguments for reusing and sharing mi-
croservices over libraries in bioinformatics applications, that
would justify the cost of hosting an maintaining a set of
distributed microservices. We argue that applications that
require large computational or storage resources can benefit
from the microservices approach because the applications
can share the underlying compute infrastructure between

22js.cytoscapejs.org.
23nodejs.org.

github.com/fjukstad/kvik/tree/master/r/benchmarks
github.com/fjukstad/kvik/tree/master/r/benchmarks
opencpu.org/apps.html
shiny.rstudio.com
js.cytoscapejs.org
nodejs.org

multiple applications and users. This makes it possible to
deploy an application on a lightweight system that uses a
common service for computation and storage. In addition,
benefits such as using different programming languages for a
single application, and packaging a microservice as a software
container, help to outweigh the operational burden related
to using microservices to build applications.

We have used this approach to build different web applica-
tions and command line tools, but out of space constraints we
only showcase one application in this paper. We have reused
the microservices for running statistical analyses and fetch
biological metadata, and share these between applications.
This makes it possible for multiple applications to use one or
more powerful servers for hosting the services. In the case of
statistical analyses we simply install the necessary R packages
for each application on the compute service and run it as we
would for one single application.

Future work

We intend to address few points we aim to address in future
work, both in the MIxT web application as well as the sup-
porting microservices. The first issue is to improve the user
experience in the MIxT web application. Since it is executing
many of the analyses on demand, the user interface may seem
unresponsive. We are working on mechanisms that gives the
user feedback when the computations are taking a long time,
but also reducing analysis time by optimizing the underlying
R package. The database service provides a sufficient interface
for the MIxT web application. While we have developed the
software packages for interfacing with more databases, these
haven’t been included in the database service yet. In future
versions we aim to make the database service an interface for
all our applications. We also aim to improve how we capture
data provenance. We aim to provide database versions and
meta-data about when a specific item was retrieved from the
database. One large concern that we haven’t addressed in
this paper is security. In particular one security concern that
we aim to address in Kvik is the restrictions on the execution
of code in the compute service. We aim to address this in
the next version of the compute service, using methods such
as AppArmor24 that can restrict a program’s resource ac-
cess. In addition to code security we will address data access,
specifically put constraints on who can access data from the
compute service. We also aim to explore different alternatives
for scaling up the compute service. Since we already interface
with R we can use the Sparklyr25 or SparkR26 packages to
run analyses on top of Spark.[12] Using Spark as an execution
engine for data analyses will enable applications to explore
even larger datasets.

CONCLUSIONS

We have designed an approach for building data exploration
applications in systems biology that is based on a microservice

24wiki.ubuntu.com/AppArmor.
25spark.rstudio.com.
26spark.apache.org/docs/latest/sparkr.html.

architecture. Using this approach we have built a web appli-
cation that leverages this architecture to integrate statistical
analyses, interactive visualizations, and data from biological
databases. While we have used our approach to build an ap-
plication in systems biology, we believe that the microservice
architecture can be used to build data exploration systems
in other disciplines as well.

ACKNOWLEDGMENTS

We would like to thank Andrew Bogecho and the System
Staff at the School of Computer Science at McGill University
for maintaining the compute infrastructure used to run the
MIxT system.

This work has been funded by The European Research
Council (ERC-AdG 232997 TICE), and The Canadian Cancer
Society Research Institute (INNOV2-2014-702940).

REFERENCES
[1] Alexander Bertram. 2013. Renjin: The new R interpreter built

on the JVM. In The R User Conference, useR! 2013 July 10-12
2013 University of Castilla-La Mancha, Albacete, Spain, Vol. 10.
105.

[2] Peter JA Cock, Tiago Antao, Jeffrey T Chang, Brad A Chapman,
Cymon J Cox, Andrew Dalke, Iddo Friedberg, Thomas Hamelryck,
Frank Kauff, Bartek Wilczynski, and others. 2009. Biopython:
freely available Python tools for computational molecular biology
and bioinformatics. Bioinformatics 25, 11 (2009), 1422–1423.

[3] Vanessa Dumeaux, Bjørn Fjukstad, Hans Fjosne E, Jan-Ole
Frantzen, Marit Muri Holmen, Enno Rodegerdts, Ellen Schlicht-
ing, Anne-Lise Børresen-Dale, Lars Ailo Bongo, Eiliv Lund, and
Michael T. Hallett. 2017. Interactions between the tumor and the
blood systemic response of breast cancer patients. Under review
(2017).

[4] Bjørn Fjukstad, Karina Standahl Olsen, Mie Jareid, Eiliv Lund,
and Lars Ailo Bongo. 2015. Kvik: three-tier data exploration tools
for flexible analysis of genomic data in epidemiological studies.
F1000Research 4 (2015).

[5] John Gómez, Leyla J Garćıa, Gustavo A Salazar, Jose Villaveces,
Swanand Gore, Alexander Garćıa, Maria J Mart́ın, Guillaume
Launay, Rafael Alcántara, Noemi Del Toro Ayllón, and others.
2013. BioJS: an open source JavaScript framework for biological
data visualization. Bioinformatics (2013), btt100.

[6] R Daniel Kortschak and David L Adelson. 2014. b́ıogo: a
simple high-performance bioinformatics toolkit for the Go
language. bioRxiv (2014). DOI:https://doi.org/10.1101/005033
arXiv:http://biorxiv.org/content/early/2014/05/12/005033.full.pdf

[7] Keiichiro Ono, Tanja Muetze, Georgi Kolishovski, Paul Shannon,
and Barry Demchak. 2015. CyREST: Turbocharging Cytoscape
Access for External Tools via a RESTful API. F1000Research 4
(2015).

[8] Jeroen Ooms. 2014. The OpenCPU System: Towards a Universal
Interface for Scientific Computing through Separation of Concerns.
arXiv preprint arXiv:1406.4806 (2014).

[9] Andrea Sboner, Xinmeng Jasmine Mu, Dov Greenbaum, Ray-
mond K Auerbach, and Mark B Gerstein. 2011. The real cost of
sequencing: higher than you think! Genome biology 12, 8 (2011),
125.

[10] Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S Baliga,
Jonathan T Wang, Daniel Ramage, Nada Amin, Benno
Schwikowski, and Trey Ideker. 2003. Cytoscape: a software en-
vironment for integrated models of biomolecular interaction net-
works. Genome research 13, 11 (2003), 2498–2504.

[11] Christopher L Williams, Jeffrey C Sica, Robert T Killen, and
Ulysses GJ Balis. 2016. The growing need for microservices in
bioinformatics. Journal of Pathology Informatics 7 (2016).

[12] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott
Shenker, and Ion Stoica. 2010. Spark: Cluster Computing with
Working Sets. HotCloud 10, 10-10 (2010), 95.

wiki.ubuntu.com/AppArmor
spark.rstudio.com
spark.apache.org/docs/latest/sparkr.html
https://doi.org/10.1101/005033
http://arxiv.org/abs/http://biorxiv.org/content/early/2014/05/12/005033.full.pdf

	Abstract
	Acknowledgments
	References

