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Abstract

Although systemic immunity is critical to the process of tumor rejection, cancer research has

largely focused on immune cells in the tumor microenvironment. To understand molecular

changes in the patient systemic response (SR) to the presence of BC, we profiled RNA in

blood and matched tumor from 173 patients. We designed a system (MIxT, Matched Inter-

actions Across Tissues) to systematically explore and link molecular processes expressed

in each tissue. MIxT confirmed that processes active in the patient SR are especially rele-

vant to BC immunogenicity. The nature of interactions across tissues (i.e. which biological

processes are associated and their patterns of expression) varies highly with tumor subtype.

For example, aspects of the immune SR are underexpressed proportionally to the level of

expression of defined molecular processes specific to basal tumors. The catalog of subtype-

specific interactions across tissues from BC patients provides promising new ways to tackle

or monitor the disease by exploiting the patient SR.

Author summary

We present a novel system (MIxT) to identify genes and pathways in the primary tumor

that are tightly linked to genes and pathways in the patient systemic response (SR). These

results suggest new ways to tackle and monitor the disease by looking outside the tumor

and exploiting the patient SR.
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Introduction

Breast cancer (BC) research has largely focused on understanding the intrinsic properties of

the primary tumor in order to therapeutically target key molecular components that drive pro-

gression within the tumor epithelial cells [1]. For example, tamoxifen and trastuzumab target

the estrogen and human epidermal growth factor receptors (ER, HER2) whose expression lev-

els in tumors define the traditional clinical subtypes of BC. The vast majority of BC-related

genomic studies have focused on bulk tumor samples that are expected to be enriched for neo-

plastic epithelial cells [2]. These efforts have produced subtyping schemes that classify patients

into groups based on the similarity of expression of diverse molecular markers and processes

[3–9] and generated gene signatures that can predict patient prognosis and benefit from ther-

apy [10–13].

Cancers however are much more than an autonomous mass of epithelial cells. They consti-

tute multicellular systems capable of bidirectional interactions with neighboring non-malig-

nant cells and extracellular components i.e. the tumor microenvironment [14–16]. Tumor-

microenvironmental interactions are necessary for tumor progression and drug sensitivity [16,

17] and are becoming better understood [18–21]. In fact, several genomics studies of the BC

microenvironment, including our efforts, show that the microenvironment reflects its tumor

and harbors prognostic information [22–24]. However, we also recently established that the

primary tumor and its microenvironment does not harbor accurate prognostic signals in

approximately 20% of BC patients [9]. Specifically, these patients are consistently misclassified

by all hallmarks of breast tumors defining tumor epithelial cells (such as proliferation and ER

status) and their microenvironment (such as the infiltration of immune cells, angiogenesis and

fibroblast activation).

The systemic response (SR) in cancer patients refers here to the perturbations that occur in

peripheral blood cells, which include immune effector cells and circulate throughout the body.

The fact that a tumor exerts systemic effects (via eg soluble or exosomal factors) may provide an

explanation for the clinical observation that patients with one tumor have an increased risk of

developing several independent tumors, and that removal of primary cancer improves the sur-

vival of patients with distant metastases at the time of diagnosis [25]. In addition, since ER posi-

tive (ER+) BC tends to recur as long as 10–15 years after surgical removal of the tumor, it is

important to understand systemic factors governing late recurrence and therapeutic approaches

that target beyond the tumor site. In fact, there is a rapidly increasing understanding of the vari-

ous means a tumor employs to favor metastasis in distant organs [26, 27]. For example, an

“instigating” BC can exploit the patient SR so that otherwise-indolent disseminated tumor cells

become activated [27–32]. The SR has also been investigated in BC at time of diagnosis. Specifi-

cally, our recent comparison of blood profiles of BC patients and matched controls yielded a

gene signature that reports the presence of BC [33]. This diagnostic signature is specific to BC

(i.e. the test classifies women with carcinoma other than breast as negative), and the composi-

tion of genes and enriched pathways in the signature suggest that a cytostatic immune-related

signal in the SR of patients is associated with the presence of a tumor. Finally, recent evidence

demonstrates that engagement of systemic immunity is critical to the process of tumor rejection

in genetically engineered mouse models [34].

This study is the first large-scale genomics effort to study the molecular relationships

between patient SR and primary tumor. We generated and analyzed expression profiles from

peripheral blood and matched tumor cells in 173 BC patients. First, our results highlight how

the patient SR is especially relevant to BC immunogenicity. Second, we present a novel tool

entitled Matched Interactions across Tissues (MIxT) that starts by identifying sets of genes

tightly co-expressed across all patients in each tissue. Then, MIxT identifies which of these
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gene sets and pathways expressed in one tissue are associated with gene sets and pathways in

the second tissue by determining if their expression patterns in tumor and in the patient SR

are tightly correlated. We find that there are very few such associations when all BC are consid-

ered. However, we do identify biological processes with significant associations between

tumor and patient SR when we stratify our analysis by BC subtype. That is, we identify molecu-

lar processes in the tumor that are tightly co-expressed with (different) molecular processes in

the SR across patients of a specific subtype. In particular, we detail how several tumor-permis-

sive signals are associated between the tumor and SR of basal BC patients.

Results

A population genomic resource of blood and matched tumor cells from

BC patients

The Norwegian Women and Cancer (NOWAC) is a prospective population-based cohort that

tracks 34% of all Norwegian women born between 1943–57. In collaboration with all major

hospitals in Norway, we collected blood samples and matched tumor from women with an

abnormal lesion, at the time of the diagnostic biopsy or at surgery, before surgery and any

treatment (N ~ 300, S1 Text). RNA preservation for blood samples obtained followed our

methodology previously described [33, 35] and detailed in S1 Text. RNA profiles from blood

and tumor cells were generated using Illumina Beadarrays and data were processed following

careful procedures (S1 Text, S1A Fig). After quality control, our study retained matched blood

(SR) and tumor profiles of 173 BC patients diagnosed with invasive ductal carcinoma, and

blood profiles of 282 control women (ie. women with no history of cancer with the exception

of basal-cell and cervical carcinoma, which are both very common; Fig 1A). The controls are

used to determine what constitutes a “normal” SR. BC patients and controls are comparable in

terms of age, weight and menopausal status (Fig 1B). Several groups including ours have

defined intra- and inter- individual variability of blood gene expression in healthy individuals

[35–38]. All together, these studies demonstrate that intra-individual changes that can occur

between blood draws are strikingly smaller than the variation observed among samples col-

lected from different individuals. In this study, most women were 50 year-old or older and

postmenopausal at time of sampling. Each profile measures the expression of 16,782 unique

genes (S1 Text, S1A Fig). Almost all BC (95.4%) are early-stage disease (stage I or II).

Transcriptional fingerprint of BC subtypes is not the predominant signal

in the patient SR

Several tumor RNA-based subtyping tools were applied including PAM50 [5] that defines the

intrinsic subtypes including luminal A (lumA), luminal B (lumB), normal-like (normalL),

basal-like (basalL), and her2-enriched (her2E). The hybrid subtyping scheme partitions ER

+ tumors according to their intrinsic subtype and partitions ER- tumors according to their

HER2 status [9] (S1 Text, S1B and S1C Fig). In our dataset, all intrinsic luminals (lumA and

lumB) and most normalL tumors (85.2%) are ER+; however, ~40% of basalL and ~50% of

her2E BC are ER+ (Fig 1C, S1 Table). We also applied the Cartes d’Identité des Tumeurs

(CIT) [8] subtyping scheme, which includes a ‘molecular-\ apocrine’ (mApo) subtype enriched

for ER-/HER2+ tumors (78.6%) and the highly immunogenic ER+ luminal C (lumC) subtype

enriched for ER+/basalL (39.1%). Fig 1C and S1 Table depict the relationships between these

three schemes.

Although the IntClust (IC) subtyping scheme [6] is based on gene expression and DNA

copy number profiles simultaneously, subtypes can be inferred using a reported RNA-based
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surrogate algorithm [7, 39]. S1 Table reports when subtypes from other schemes are enriched

in each IC subtype. Most notably, IC1 and IC9 are enriched for CIT lumB; IC3, IC7 and IC8

are enriched for lumA; IC4+ is enriched for normalL and at lesser extent CIT lumC, IC5

enriched for mApo-her2E-HER2+, and IC10 enriched for basalL and ER-/HER2-. IC2, IC4-,

and IC6 include very few patients (n< 10) and were therefore not further considered in our

downstream analyses.

Restricting our attention to tumor profiles, we performed sparse hierarchical clustering

with complete linkage using a permutation approach to select the tuning parameter that

weights each gene to compute the dissimilarity matrix [40]. The resulting clusters were

strongly associated with BC subtypes for all three RNA-based schemes (Fig 1D upper), which

confirms that the transcriptional fingerprint of BC subtypes are also ubiquitous in our tumor

samples. When restricting our attention to SR profiles, this unsupervised analysis does not

identify patient clusters enriched for any given subtype across the three schemes (Fig 1D

lower), suggesting that the transcriptional fingerprint of BC subtypes is not the predominant

signal in the patient SR.

Univariate gene markers are identified in the patient SR for one

immunogenic BC subtype

We then asked if there are genes in the patient SR whose expression covaries with the state of

the pathological variables ER and HER2 measured in the primary tumor. Although both are

key drivers in BC, neither was found to be associated with individual gene expression changes

in the patient SR (limma, linear models for microarray data, false discovery rate, fdr� 0.2, Fig

1E; S1 Text). Similarly, we asked if there are genes in the SR that are markers of tumor subtype

(n patients > 10). For the intrinsic, hybrid, and IntClust subtypes, only the ubiquitin ligase

RFWD3 is highly expressed uniquely in the SR of lumA patients, and TIMP3, an inhibitor of

matrix metalloproteinases, is highly expressed uniquely in ER+/her2E patients (Fig 1E, S2 Fig).

For the CIT subtypes [8], we found 70 univariate gene markers in the SR of patients of the

lumC subtype. The genes are primarily involved in general cellular processes such as protein

processing or transcription in blood cells (fdr� 0.2, Fig 1E, S3 Fig). The lumC subtype is

defined by strong activation of several immune pathways at the site of ER+ tumor (i.e. antigen

presentation and processing pathway, hematopoietic cell lineage, NK cell mediated cytotoxic-

ity, T-cell receptor signaling and Toll-like receptor signaling) [8], suggesting that the SR is

informative in cases where the primary tumor exhibits strong immune properties.

Systems-level analysis reveals tissue-specific molecular processes

To compare genome-wide molecular changes in tumor and SR across patients, we used

WGCNA-based clustering to define sets of tightly co-expressed genes (termed modules) in

tumor and blood, respectively [41] (S1 Text). Briefly, we opted for a distance measure based

on topological overlap, which considers the correlation between two genes and their respective

correlations with neighboring genes [42] (S1 Text). The WGCNA cut and merge routine [43]

after clustering identified 19 and 23 modules in the patient tumor and SR, respectively (S4 Fig;

Fig 1. Individual characteristics and SR markers of BC subtypes. (A) Collection of biospecimen from BC patients and controls. (B) Individual

characteristics of BC patients and controls. (C) Parallel plot displaying the repartition of BC patients across RNA-based subtyping schemes. (D) Sparse

hierarchical clustering of BC patients based on genes expressed in tumor (upper) and the patient SR (lower). Clinicopathological and subtypes attributes

are presented below the dendrogram. (E) Significant gene markers of subtypes in SR (false discovery rate, fdr� 0.2). Blue and red shade correspond to

under- and over- expression of the marker in a given subtype vs the others, respectively. Shading is proportional to the level of significance of the gene

marker.

https://doi.org/10.1371/journal.pcbi.1005680.g001
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S1 Text). Each of these modules can be considered as a unique and stable pattern of expression

shared by a significant number of genes.

Modules of the primary tumor are enriched for genes from a broad range of BC hallmarks

including angiogenesis (salmon module), extracellular matrix reorganization (greenyellow),

proliferation (green), and immune response (brown and darkturquoise) (S2 and S3 Tables, S1

Text). For example, the proliferation tumor module is enriched for mitotic cell cycle-related

genes (green, n = 1064 genes; weight01 Fisher test [44], p-value < 2e-17) including the well-

known marker of proliferation MKI67, 12 serine/threonine kinases that are used in the calcu-

lation of the mitotic kinase score (MKS) [45], and several components of the Minichromo-

some Maintenance Complex (MCM).

Modules of the patient SR are often enriched for genes involved in either general cellular

processes such as translation (black) and transcription (grey60), or immune-related processes

such as inflammatory response (brown, green), B-cell response (saddlebrown), innate immune

response (greenyellow) (S4 and S5 Tables). Thus, seven SR modules are enriched in genes that

are specifically expressed in immune cells [46] (“iris” signature set in S5 Table; Fisher’s Exact

Test FET fdr< 0.05).

We constructed a web-based system to visualize gene expression networks, heatmaps and

pathway analyses of the modules in each tissue at http://mixt-blood-tumor.bci.mcgill.ca. In a

network, genes are represented by nodes (colored by their module membership) that are con-

nected by edges whose length corresponds to their level of co-expression across patients [47].

When selecting only strong gene-gene correlations (topological overlap> 0.1) and removing

isolated nodes, the SR network has ~20% more genes than the tumor network (Fig 2A and 2B).

Moreover, the SR network has approximately twice as many edges (89,465 connections between

genes) than the tumor network (50,617 connections between genes). Thus, the underlying pat-

terns of expression of the tumor genes (and modules) are more dissimilar from each other than

the patterns of expression of the SR genes (and modules). In both tissues, the edges that span

between modules reflect natural overlaps between cellular process (Fig 2A and 2B). For example

in tumors, angiogenesis-related genes of the salmon module are strongly co-expressed with

genes of the greenyellow module involved in extracellular matrix remodeling. In blood, mod-

ules enriched for genes involved in general cellular processes such as translation (black), RNA

processing (violet), and RNA splicing (darkred) are also heavily connected to each other.

Several processes in the SR are differentially expressed in patients with

HER2+, lumC or large tumors

We first investigated the relationships between the expression pattern of each module and

patient clinicopathological attributes. Towards this end, each gene of a module is used to rank

the patient samples (S1 Text). In particular, the sum of gene ranks (ranksum) for each patient

provides a linear ordering of the patient samples. Association tests then compare the ranksum

values of patients with the attribute of interest eg tumor subtype (S1 Text).

When we consider tumor modules, the expression pattern of the green module (S5A Fig),

previously established to be enriched for proliferation-related genes (S2 Table), ranks basalL,

her2E and lumB tumors significantly higher than lumA and normalL tumors (ANOVA p-

value < 1e-34, S5B Fig). In fact, we observe that the expression pattern of nearly every module

is associated with BC subtype (15 of 19 modules, Fig 2C, fdr� 0.15). Moreover, many tumor

modules are associated with the proliferative state of the tumor encoded into the MKS score

[45] (Pearson correlation, fdr� 0.15) or with ER status (ER+ vs ER-, t-test, fdr� 0.15), two

variables that are strongly embedded in the definition of BC subtypes (Fig 2C). These results

are consistent with our previous claim that patient subtype is a predominant signal in the
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primary tumor. Several tumor modules are associated with HER2 status of the tumor, however

there are fewer such modules (n = 6) when compared with the proliferative state or ER status

Fig 2. Gene co-expression networks, modules and associations with clinicopathological attributes of BC patients. (A) Network visualization using

the edge-weighted spring embedded layout from Cytoscape (v3.2.1) including the top gene connections (topological overlap > 0.1) in tumor. Each node

(gene) is color-coded by the module to which it belongs, Keywords representing top pathway enrichments (biological processes) are indicated for each

module. (B) Network visualization including the top gene connections in the patient SR. The legend follows Fig 2A. (C) Associations between tumor modules

and clinicopathological attributes of patients. Associations were estimated using Pearson correlation (Student’s p) or ANOVA. Shading is proportional to

-log10(fdr) of the associations (fdr� 0.15). HER2S: HER2 score; LUMS: luminal score; MKS: Mitotic kinase gene expression score; hrt: hormone replacement

therapy (D) Associations between SR modules and clinicopathological attributes of patients. The legend follows Fig 2C.

https://doi.org/10.1371/journal.pcbi.1005680.g002
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of the tumor (Fig 2C), suggesting that transcriptional fingerprint of HER2 is not as ubiquitous

in tumor samples. A small number of modules are associated with the lumC subtype, including

the brown module enriched for T-cell and inflammatory response genes (S2 Table). This is

again consistent with the fact that this is a highly immunogenic subtype [8] (lumC versus not

lumC, t-test, fdr� 0.15, Fig 2C).

HER2 status, the lumC subtype and tumor size are all associated with modules of the patient

SR (Fig 2D, t-test fdr� 0.15). Although we did not find univariate gene markers in blood asso-

ciated with HER2 status, the saddlebrown SR module is significantly underexpressed in

patients with HER2+ tumors compared to other BC subtypes and controls (fdr = 0.07, S6A

Fig) and is enriched for genes involved in B-cell receptor signaling and proliferation (including

BLK, CXCR5, CD19,CD79A,CD79B and FCRL5; S4 and S5 Tables). Four SR modules are asso-

ciated with the immunogenic lumC subtype; one of these modules are also associated with

tumor size (Fig 2D, S6B and S6C Fig). Among the 70 univariate gene markers in blood of

lumC tumors identified earlier, 31 are included in the darkgreen SR module predominantly

underexpressed in lumC patients in comparison to other BC subtypes (fdr = 0.02, S6B Fig). In

fact, all four SR modules associated with the lumC subtype are underexpressed compared to

other BC subtypes and control samples (S6B and S6C Fig). This includes the purple module

highly enriched for genes involved in T-cell (thymus) homing (CCR7, LTA, LTB, VEGFB,

HAPLN3, SLC7A6, SIRPG, BCL11B0) and activation (CD47, TNFRSF25,MAL, LDLRAP1,

CD40LG) which are underexpressed in lumC patients (fdr = 0.04, S6B Fig). Genes in the cyan

modules are also found underexpressed in patients with large (> 2cm) tumors compared to

other BC patients and controls (Fig 2D, S6C Fig). Finally, specifically for patients with large

tumors, both the darkgrey module, which is enriched forMYC target genes, and the greenyel-

low module, which is enriched for genes involved in the lymphoid cell-mediated immunity

(including GZMH, GZMB,GZMM, KLRD1, PRF1, KLRG1, and GNLY; S4 and S5 Tables), are

underexpressed compared to the remaining BC patients and controls.

Together these results indicate that distinct SR are detected in BC patients with HER2+,

lumC and/or large tumors, and that overall the patient immune response is underexpressed

compared to patients of other subtypes and controls. These results also highlight the impor-

tance of distinct immune components for each of these disease groups. In particular, patients

with HER2+ tumors exhibit low expression of genes specifically expressed in B-cell compared

to patients with other BC subtypes. Patients with lumC tumors exhibit low expression of genes

involved in T-cell homing and function compared to patients with other BC subtypes. Patients

with large tumors (>2cm) exhibit low expression of genes involved in lymphoid cell-mediated

immunity compared to patients with smaller tumors.

Our Matched Interactions across Tissues (MIxT) approach explores

biological processes that interact between tissues

Our analysis to this point identified modules within each tissue independently. Our focus here

is on the relationships between tissues by asking if specific biologies in one tissue are correlated

with (possibly distinct) biologies in the second tissue. To do this, we constructed a software

entitled MIxT (Matched Interactions across Tissues) that contains the computational and sta-

tistical methods for identifying and exploring associations between modules across tissues

(http://mixt-blood-tumor.bci.mcgill.ca).

Using MIxT, we first ask if genes that are tightly co-expressed in the primary tumor are also

tightly co-expressed in the SR, and vice versa (Fig 3A, S1 Text) by investigating the gene over-

lap between tumor and SR modules (Fisher’s Exact Test FET, fdr< 0.01). Genes that retain

strong co-expression across patients regardless of tissue type are likely to be involved in the
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same biological functions in both tissues as a “system-wide” response to the presence of the

disease (even if patterns of gene expression across tissues might differ).

Most modules, regardless of tissue, have significant overlap with three to five modules in

the other tissue (Fig 3A). In some cases, it appears that a single (large) module in one tissue is

in large part the union of several smaller modules from the other tissue. For example, the

brown tumor module has 2765 genes including many involved in immune-related processes

(T-cell costimulation, the IFN-gamma pathway and inflammation, S2 and S3 Tables). All of

these genes/processes show very strong co-expression in the tumor however, in the SR, these

genes divide into four distinct patterns of co-expression (Fig 3A), captured by four different

modules: brown (inflammation), greenyellow (cytolysis and innate immune response), saddle-

brown (B-cell) and pink (TNFA inflammatory response) (S4 and S5 Tables).

Of note, MIxT identifies three modules in each tissue (SR and tumor) that do not have sig-

nificant overlap with any module in the other tissue (Fig 3A). For tumors, this includes the

purple module enriched for genes involved in estrogen response, the lightcyan module

enriched for genes involved in hemidesmosome assembly and cytoarchitecture, and the green-

yellow module enriched for genes involved in ECM organization (Fig 3A, S2 and S3 Tables).

For the SR, this includes the turquoise module enriched for genes expressed in erythrocytes

and involved in hemoglobin production, the purple module enriched for genes in translational

termination, and the green module enriched for genes involved in inflammation and specifi-

cally expressed in myeloid cells (Fig 3A, S4 Table). This suggests that these processes and

responses are either specific to a tissue type (eg ECM organization specific to tumor, and

hemoglobin production specific to blood cells) or that the co-expression of genes involved in a

defined process is unique to a particular tissue (eg genes specifically co-expressed in peripheral

myeloid cells).

There is only one instance where a single tumor module has significant overlap with only a

single SR module: darkturquoise modules of size = 86 and 97 genes in SR and tumor, respec-

tively with 50 common genes, including 20 involved in the type 1 IFN signaling pathway (S2

and S4 Tables). Although these two “mirrored” modules share many genes, their patterns of

expression are significantly different between the two matched tissues (Fig 3B, correlation

between ranksums p-value > 0.05; S1 Text), hinting at a non-concordant expression of the

local (in tumor) and systemic (in blood) IFN-1 mediated signals.

MIxT identifies novel interactions between processes across tissues

within specific subtypes

Whereas the previous section considers interactions defined by a large number of shared

genes between a tumor and a SR module, we also examined more general notions of interac-

tions in MIxT. Here we identify tumor and SR modules that have similar expression patterns

(ie both modules linearly order the patients in very similar manner in both tissues) but do not

necessarily share any genes in common. More specifically, MIxT derives estimates of signifi-

cance for interactions using a random permutation approach based on the Pearson correlation

between ranksums of gene expression in modules across tissues (S1 Text). This type of interac-

tion detects a biological process or response in the primary tumor that is tightly correlated (or

anti-correlated) with a (possibly distinct) biological process or response in the SR, and vice

versa. The specific expression pattern in the tissues allows us to then postulate the functional

nature of the interaction across tissues.

MIxT identified only one tumor module (of 19) that interacts with only a single SR module

(of 23) across all patients (MIxT statistic; p-value < 0.005). The paucity of pan-BC interactions

across tissues suggest the need to stratify by patient subtype. After stratification for each of the
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five subtyping schemes (clinical, PAM50, hybrid, CIT, and Intclust) (Fig 4A), we identified 53

interactions involving 15 tumor modules and 19 SR modules (MIxT statistic; p-value < 0.005;

Fig 4B, S7 Fig). Tumor and SR modules are indicated in columns and rows of Fig 4B, respec-

tively. A non-empty cell corresponds to a significant interaction with color used to indicate in

which subtype the association is found, grouping together similar subtypes across schemes (eg

basalL tumors of the pam50 and CIT schemes). Nearly all interactions are significant in only a

single subtype (four exceptions indicated by orange arrows, Fig 4B). For some subtypes, a sin-

gle stimulus in the tumor affects several biological processes in the patient SR. For example,

within the ER+/HER2- subtype and only within this subtype, the pink tumor module, enriched

for genes involved in alternative splicing, is associated with three SR modules, enriched for a

diverse range of biological processes (orange rectangle in Fig 4B).

Immune activity at the tumor site is associated with inflammatory SR in

opposite ways for two distinct subtypes

The brown tumor module, which is enriched for genes involved in immune processes (S2

Table), has several interactions with SR modules across several subtypes (orange rectangle in

Fig 4B). This includes interactions specific to normalL, lumB and IC9 but also several distinct

interactions within the ER-/HER2- and basal subtypes. This suggests that immune signals

expressed in tumor are associated with changes in expression of different molecular processes

in the patient SR for a broad range of subtypes.

As alluded to earlier, only a few interactions are significant in two distinct subtypes simulta-

neously. For example, the brown tumor module is associated with green SR module in both

ER-/HER2- and lumB although the directionality of the association differs between the two

cases. More specifically, patients with high ranksums in the brown tumor module have low

ranksums according to the green SR module, if the patient is of the ER-/HER2- subtype (Fig

5A, 5C and 5E, MIxT statistic, p-value = 0.004). At the same time, patients with high ranksums

in the brown tumor module have high ranksum with respect to the green SR module, if the

patient is of the lumB subtype (Fig 5B, 5D and 5F MIxT statistic, p-value< 0.004). In this man-

ner the direction of correlation between the biological processes of the brown tumor module

and of the green SR module is determined by the subtype of the patient.

For the brown tumor module in both subtypes, patients with a high ranksum (on the left of

the ordering in Fig 5B or 5C for both subtypes) have the strongest immune signals in the

tumors. This is because most of the immune-related genes in this brown module (within the

red sidebar in Fig 5B and 5C, S3 Table) have highest expression in these patients. This includes

genes involved in T-cell stimulation (incl. CD3, CD4, CD5, ICOS, several HLA-DR, -DP,

-DQ), IFNɣ signaling (IFNG, IRF1-5, ICAM1, IFI30,HLA-A -B -C) and inflammation (incl.

several interleukins, chemokines). For the green SR module in both subtypes, a high rank-

sum indicates an inflammatory SR (patients on the right in Fig 5E for ER-/HER2-, and

patients on the left in Fig 5F for lumB). This is because almost every inflammation-related

genes (incl. IFNAR1, IL15, TLR2, IL18RAP, RNF144B), and B-cell proliferation genes (incl.

Fig 3. Modules size and overlap in their gene composition across tissues. (A) Histograms depicting number of genes

composing modules in each tissue. Edges between modules indicate significant overlaps in gene composition (Fisher exact

test, fdr < 0.01). (B) Expression heatmaps of the 47 genes included in both darkturquoise modules in tumor (upper) and SR

(lower). Patients in both heatmaps are linearly ordered based on their ranksum of gene expression in tumors. Yellow vertical

lines delimit the region of Independence (ROI95) in tumor that contains 95% of randomly generated samples. Twenty genes

out of the 47 common genes are involved in the type 1 IFN signaling pathway (IFN alpha signaling pathway is depicted on the

right).

https://doi.org/10.1371/journal.pcbi.1005680.g003

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 11 / 27

https://doi.org/10.1371/journal.pcbi.1005680.g003
https://doi.org/10.1371/journal.pcbi.1005680


BCL6, IL13RA1,MIF, IRS2) (within the red sidebar in Fig 5E and 5F, S5 Table) have highest

expression in these patients.

Thus, ER-/HER2- patients with low immune activity at the tumor site have a high inflam-

matory SR (right side of Fig 5C and 5E). In fact, the level of the inflammatory response in

these BC patients is higher than healthy controls (Fig 5I, t-test, p< 0.001). However, for the

lumB subtype, the relationship between tumor and SR is reversed. Here, it is the patients that

Fig 4. Subtype-Specific Matched Interactions across Tissue (ssMIxT). (A) Schematic of ssMIxT analysis (B) Significant associations between

modules in SR and tumor from BC patients by subtype (MIxT statistic, p-value < 0.005). SR and tumor modules with top pathway enrichment keywords are

presented in rows and columns, respectively. Subtype(s) in which the significant associations are found are indicated in the table. Blue and red borders

correspond to negative and positive correlations between ranksums, respectively. Findings discussed in the text are highlighted in orange.

https://doi.org/10.1371/journal.pcbi.1005680.g004
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Fig 5. Association between the brown tumor and green SR module for two distinct subtypes. (A) Scatter plot of

ranksums of the brown tumor module and the green SR module in ER-/HER2- patients. The top corner depicts the

background distributions of the correlations coefficients between ranksums of every modules pairs across tissues in ER-/
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have high immune activity at the tumor site that have a high inflammatory SR (left side Fig 5D

and 5F). In fact, the CIT subtyping scheme calls these patients on the left side as belonging to

the lumC subtype (Fig 5H), the highly immunogenic ER+ subtype. In these lumB patients the

inflammatory response is also higher than in healthy controls (t-test, p-value < 0.01; Fig 5J).

Altogether these results indicate that a high inflammatory SR is observed in both ER-/

HER2- and ER+/lumB patients but increase in systemic inflammation is associated with dis-

tinct immune activity at the tumor site depending on subtype.

Expression of genes in known BC amplicons is associated with

concomitant changes in the patient SR for defined subtypes

Three tumor modules are enriched for genes within amplicons prevalent in BC [48] (high-

lighted in orange in Fig 4B, S3 Table). Two modules, the darkgrey and turquoise tumor mod-

ules, contain 68 genes (of 110) and 48 genes (on 71) located within the 16p11-13 amplicon

highly prevalent in luminal tumors [48], respectively (S3 Table). The darkgrey module inter-

acts with two distinct SR modules for the lumA and ER+/HER2+ subtype, respectively (S8A

and S8B Fig). Tumors of both subtypes that over-express genes in the darkgrey module (left

hand side S8C and S8D Fig) are likely amplified in 16p13. In these patients, the presence of

this amplification is correlated with changes in expression of specific processes within the

patient SR and these processes are distinct depending on subtype (S8E and S8F Fig, p< 0.005

in both cases). S8G and S8H Fig depicts associations between the presence of this amplification

and patient clinico-pathological attributes. For example, in ER+/HER2+ patients (S8H Fig),

the presence of 16p13 amplification is correlated with the luminal score of the tumor. In the

lumA subtype, patients with the highest expression of the lightyellow SR module are signifi-

cantly different than healthy controls (S8I Fig), and in the ER+/HER2+ subtype, patients with

the lowest expression of the salmon module are significantly different than healthy controls

(S8J Fig).

The third module enriched for genes involved in BC amplifications is the darkgreen tumor

module. This module contains 43 (of 99) genes within the 8q23-24 amplicon prevalent in basal

and her2E tumors [48] (S3 Table). Most associations with patient SR modules are specific to

the basalL subtype (Fig 4B) and again suggest that basalL tumors that harbor this amplification

have concomitant changes in expression of specific molecular processes in patient SR.

HER2- patients. (B) Scatter plot of ranksums of the brown tumor module and the green SR module in ER+/lumB patients.

Legend follows Fig 5A (C) Expression heatmap of genes in the brown tumor module in ER-/HER2- patients. Patients are

linearly ordered based on the ranksum of gene expression in the brown tumor module. Yellow vertical lines delimit the

ROI95 in tumor that contains 95% of the randomly generated samples. Genes that are positively and negatively correlated

with the ranksum are represented in the right sidebar colored in red and blue, respectively. Top pathway enrichment

keywords and representative genes are indicated on the left and right of the heatmap, respectively). (D) Expression

heatmap of genes in the brown tumor module in ER+/lumB patients. Legend follows Fig 5C. (E) Expression heatmap of

genes in the green SR module in ER-/HER2- patients. Legend follows Fig 5C. Top pathway enrichment keywords and

representative genes are indicated on the left and right of the heatmap, respectively. (F) Expression heatmap of genes in

the green SR module in ER+/lumB patients. Legend follows Fig 5E. (G) Clinical characteristics of ER-/HER2- patients

ordered by the ranksum of gene expression in the brown tumor module. Legend follows Fig 1D. (H) Clinical characteristics

of ER+/lumB patients ordered by the ranksum of gene expression in the brown tumor module. Legend follows Fig 1D.

Asterisks represent the level of significance of the associations between the gene ranksums for the brown tumor module

and clinicopathological attributes of patients. Associations were estimated using ANOVA (fdr < ***0.01). (I) Distribution of

ranksums for ER-/HER2- patients and controls induced by the expression of genes in the green SR module. Patients are

grouped according to the ROI95 brown tumor module category as defined in Fig 5C. aov: analysis of variance (J)

Distribution of ranksums for ER+/lumB patients and controls induced by the expression of genes in the green SR module.

Patients are grouped according to the ROI95 brown tumor module category as defined in Fig 5D.

https://doi.org/10.1371/journal.pcbi.1005680.g005
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A fully integrated view of molecular changes correlated between tumor

and SR in basalL patients

Approximately one-fourth of the interactions identified by MIxT are specific to ER-/HER2-,

IC10 and basalL subtypes, indicating that the tumor and SR interact strongly in this family of

BCs (Fig 4B). We study two tumor modules in greater depth here: the brown immune-

enriched module and the darkgreen 8q-enriched module, and their interactions with SR mod-

ules in basalL patients (Fig 6A–6C). Here the brown tumor module interacts with one (tan) SR

module enriched for genes involved in TOR signaling and cell proliferation (Fig 6A and 6B).

BasalL patients with low immune activity at their tumor site (right side of brown tumor mod-

ule) have low expression of the tan SR module, and this expression is significantly lower than

healthy controls (boxplots in Fig 6B, t-test p< 0.0005).

The darkgreen tumor module interacts with four SR modules in basalL patients (Fig 6A

and 6C). High expression of genes in 8q is associated with high expression of the green SR

module. This module is enriched for genes involved in inflammation. For the remaining three

SR modules associated with the 8q-enriched tumor module, almost all genes in these modules

are underexpressed when 8q genes are highly expressed (ie. the patient orderings are reversed

compared to the darkgreen tumor module). These SR modules contain genes involved in gen-

eral cellular processes of blood cells (RNA/protein processing, cell proliferation; darkgreen

module), genes involved in cytolysis and lymphoid cell-mediated immunity (greenyellow

module), and MYC and CD5 target genes (darkgrey module) (Fig 6A–6C, S5 Table). The

increase in inflammatory SR and the decrease in the three other molecular processes in the SR

of basalL patients whose tumor is amplified on 8q are all significantly different from how these

processes are expressed in healthy controls (boxplots in Fig 6C). Overall, we identified one dis-

tinct signature in the SR of basalL patients with low immune activity at their tumor site and

several immuno-suppressive signals in the SR of basalL patients whose tumor is amplified on

8q.

Discussion

Molecular profiles of peripheral blood cells and matched tumors were generated and com-

pared for a large cohort of BC patients part of the NOWAC study. The NOWAC consortium

provides a highly curated population-based study with extensive gene expression profiling

across several tissues from BC patients and controls [35, 49]. A careful design and our exten-

sive experience in blood-based expression profiles enable a detailed molecular description of

the patient SR to the presence of BC where blood molecular profiles represent effectively an

“averaging” over the transcriptional programs of the different types of cells in blood.

We first asked if the SR could provide accurate univariate markers of tumoral properties

such as ER status or subtype. Although thousands of transcripts are differentially expressed in

tumors between ER+ and ER- BC [9, 50], there is no gene in SR that can reliably predict ER

status of the primary tumor. Moreover, the SR does not inform on the intrinsic BC subtype of

the tumor such as lumA, lumB or basalL subtype or on IntClust subtypes. Interestingly, uni-

variate markers in the patient SR were only identified for the CIT lumC subtype defined as

particularly immunogenic ER+ tumors [8], suggesting that the SR is informative in cases

where the primary tumor exhibits strong immune properties. This is consistent with previous

reports that uses blood transcriptomics as a gateway into the patient immune system [51–53]

and which is extensively used in the context of autoimmune and infectious diseases [54–56].

This result suggests that it is also applicable in cancer such as BC.

To further investigate the molecular changes in the patient SR, we extended our analyses to

multivariate approaches where genes are combined into sets or “modules”. In particular, we
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Fig 6. Significant Matched Interactions across Tissue (MIxT) in basalL patients. (A) The figure summarizes the two sets of significant MIxT in basalL

patients detailed in Fig 6A and 6C. Top pathway enrichment keywords are presented for each module. Red and blue arrows correspond to negative and
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performed cluster analysis to partition the genes of both tumor and SR profiles into modules

with each module representing a distinct pattern of expression across patients. Our user-

friendly website (www.mixt-blood-tumor.bci.mcgill.ca) provides access to these modules built

in each tissue, enables investigation of their expression profiles in each tissue and allow user-

defined queries of gene, gene sets, and pathway of interest. Further, our MIxT approach esti-

mates gene module expression in both tissues and find significant associations between mod-

ules across tissues in a representative cohort of BC patients.

In our dataset, the primary tumor and SR have approximately the same number of modules

(19 and 23, respectively) but their gene composition is qualitatively different. Not surprisingly,

many modules in tumors were enriched for genes involved in hallmarks of cancer, while SR

modules were enriched for either general cellular processes or specific immune responses.

Only one module involved in the IFN-I pathway is highly conserved in both tumor and SR,

although the common genes had markedly different expression patterns between the two tis-

sues. This is important as it establishes that genes, whose expression patterns may act as good

markers in the primary tumor, are not necessarily expressed in the same manner within blood

cells.

Our multivariate approach was able to identify modules from the patient SR that could reli-

ably identify not only lumC but also HER2+ and large (> 2cm) tumors. These three cases are

among the most immunogenic subtypes of BC and are of relatively poor prognosis. For these

patients, gene expression in blood cells is mostly decreased compared to other BC and controls.

This result also highlights the importance of distinct immune components of the SR for each of

these disease groups: B-cells for HER2+ tumors, T-cells for lumC, and aspects of the cellular

immune response for large tumors. Interestingly, a previous study showed that her2E tumors

have the highest B-cell infiltration and expression of B-cell receptor gene segments, although

this was not predictive of improved patient survival [57]. Our study finds an impaired systemic

B-cell response specifically in HER2+ patients, consistent with an inefficient anti-tumoral

response in these patients, potentially due to a dysfunctional antigen receptor response and cell

development. We could also speculate that the dysfunctional thymic T-cell homing signature in

lumC patients reflects the well-documented effect of estrogen on thymic T lymphopoiesis [58–

61] in patients diagnosed with a highly immunogenic ER+ tumor. These associations would cer-

tainly require validation in follow-up studies.

Finally, MIxT focuses on molecular associations between tissues and provides a holistic

view of molecular changes in BC patients. Although the focus here is towards gene expression

of blood and matched tumor, our approach could be extended to multiple tissues (eg. blood-

microenvironment-tumor) or other levels of molecular data (eg. DNA level somatic aberra-

tions, gene and miRNA expression, epigenetic profiles).

Interestingly, associations between BC tumor and patient SR are heavily dependent on sub-

type. Only one interaction between tumor and patient SR is identified when all BC patients are

considered in the analysis but many are identified when we first stratify patients by BC sub-

type. This is perhaps not surprising given that there is a great deal of molecular heterogeneity

between BC subtypes making “one SR fitting all” highly unlikely. We identified molecular sti-

muli in tumors that change patient SR in multiple ways only for patients within a particular

positive correlations between ranksums, respectively. (B) MIxT in basalL patients between the brown tumor module and the darkgreen SR module.

Heatmaps are ordered by ranksum of gene expression in the brown tumor module. Asterisks represent the level of significance of the associations between

the gene ranksums for the brown tumor module and clinicopathological attributes of patients (fdr < **0.05). Associations were estimated using ANOVA and

Pearson correlation for categorical and continuous variable, respectively. Boxplots show the distribution of ranksums for the SR module in patients classified

according to their ROI95 tumor module category and controls. (C) The second set of MIxT in basalL patients between the darkgreen tumor module and four

SR modules (darkgreen, green, greenyellow, darkgrey). Legend follows Fig 6B.

https://doi.org/10.1371/journal.pcbi.1005680.g006
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subtype. For example, expression of genes involved in alternative splicing in ER+/HER2-

tumors is associated with changes in expression of multiple processes in SR of patients and

those associations are observed only within this specific subtype.

Of note, immune signals measured at the tumor site are associated with distinct SR across a

broad range of subtypes. Immune-related processes are known to be more or less expressed

within every subtypes and have prognostic capacity in almost all subtypes [9]. Here we show

that a change in immune activity at the tumor site is not associated with equal SR across sub-

types. Furthermore, high immune signals in tumor is associated with the patient inflammatory

SR in opposite ways depending if the patient is ER-/HER2- or lumB. The high inflammatory

SR in ER-/HER2- patients (with low immune activity at the tumor site) and in lumB patients

(with high immune activity at the tumor site) were both significantly different from how sys-

temic inflammation is “normally” expressed in controls.

Finally, we identify other examples of interactions between tumor and patient SR that occur

in subtype-specific fashions. In particular, three tumor modules were enriched for genes in

known large-scale BC amplicons (16p11-13, 8q23-24). The expression of these genes changes

in a coordinated manner from high to low, suggesting that these genes measure amplification

of the corresponding region in BC tumors. In turn, these patterns of expression were associ-

ated with distinct SR depending on subtypes highlighting the significance of each amplicon in

defining patient SR for particular BC subtypes (eg 16p13 in lumA and ER+/HER2+, and 8q23-

24 in basalL and her2E). Of note, these patterns of expression also define patients with particu-

lar clinico-pathological characteristics. For example, ER+/HER2+ tumors that do not highly

express the genes on 16p have a lower luminal score than ER+/HER2+ tumors that highly

express the genes on 16p.

When we restrict our attention to basalL patients, we observe that both the immune-related

module and the presence of a 8q23-24 amplification is associated with the patient SR. In fact,

the subset of basal patients with 8q23-24 amplification exhibit high inflammatory SR and

underexpress genes involved in general cellular proliferation of blood cells, in immune cytoly-

sis, and in MYC and CD5 targets. Together, our matched profiles offer a detailed map of

tumor-permissive SR particularly relevant for basalL tumors amplified on 8q and highlight a

signature in the SR of basalL patients with low immune activity at their tumor site. This is

especially interesting in the context of BC-immunotherapy combination or for monitoring

response to these therapies. Overall, our study set the groundwork for further investigation of

promising new ways to tackle and monitor the disease by looking outside the tumor and

exploiting the patient SR.

Materials and methods

Gene expression data

Tumor and blood samples were obtained as part of the NOWAC study [49, 62] with approval

from Regional Committees for Medical and Health Research Ethics in Norway. Between

2006–10, we collected blood and biopsy samples from BC cases at time of diagnosis, and blood

samples from selected age-matched blood controls together with associated lifestyle and clini-

copathologic data (S1 Text). In total, and after data preprocessing, profiles include 16,792

unique genes expressed in primary tumors and blood from 173 BC patients, and in blood from

290 controls (S1A Fig).

Subtypes and gene markers of subtypes

We used ER status as measured by IHC and HER2 status measured by FISH or IHC where

available. When unavailable, ER and HER2 status was determined using gene expression of the
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ESR1 gene and 6 gene members of the HER2 amplicon, respectively [9, 63] (S1 Text, S1B and

S1C Fig). In addition, we calculated the HER2 score (HER2S) and the luminal score (LUMS)

as the average expression of the HER2 amplicon gene members and the pam50 luminal genes,

respectively. A proliferation score was calculated similarly using 12 mitotic kinases to produce

the Mitotic kinase gene expression score (MKS) [45]. Samples were labeled according to our

subtyping schemes from the literature: PAM50 [5], hybrid [9], CIT [8], IntClust [7, 39] (S1

Text).

Lists of differentially expressed genes in SR according to subtypes were obtained using the

R/Bioconductor package Limma [64]. Whenever p-values were adjusted for multiple testing,

the false discovery rate [65] was controlled at the reported level (S1 Text).

Weighted gene co-expression analysis (WGCNA) and gene modules

An unsigned weighted co-expression network was constructed independently in each tissue

(SR and tumor) using the R/Bioconductor package WGCNA [41] (S1 Text). First, a matrix of

pairwise correlations between all pairs of genes is constructed across blood and tumor samples,

respectively. Next, the adjacency matrix is obtained by raising the co-expression measure to

the power β = 6 (default value). Based on the resulting adjacency matrix, we calculate the topo-

logical overlap, which is a robust and biologically meaningful measure of network intercon-

nectedness [42] (that is, the strength of two genes’ co-expression relationship with respect to

all other genes in the network). Genes with highly similar co-expression relationships are

grouped together by performing average linkage hierarchical clustering on the topological

overlap. The Dynamic Hybrid Tree Cut algorithm [43] cuts the hierarchal clustering tree, and

modules are defined as branches from the tree cutting. Modules in each network were anno-

tated based on Gene Ontology biological processes (weight01 Fisher test [44]), MSigDB [66]

and other curated signatures relevant to immune and blood cell responses [33, 46, 52] (S1

Text)

Gene ranksum and linear ordering of patients

Our approach maps samples to a linear ordering based on expression of genes within a given

module or signature of interest (S1 Text). In an univariate fashion, each gene within a given

module/signature is used to rank all patients based on their expression. For each patient, the

ranks of all k genes from the signature are summed and patients are then linearly ordered

from right to left according to this ranksum vector. To identify the left and right boundaries of

the low and high regions within the observed linear ordering, we delimit the region of

independance (ROI95) for each module. Briefly, we compute (n = 10K times) the position of

an artificial patient within the observed linear ordering by summing the randomized ranks

over all k genes in the module (S1 Text). The ROI95 is defined as the region that contains 95%

of the randomly generated samples. The three defined categories of patients correspond to

those patients that have high ranskums of the module/signature (high category), low ranksums

of the module/signature (low category), and a set of patients where the expression of the genes

within the module/signature lose their pattern of pairwise correlation (mid category).

Module association tests

Using gene ranksums to capture module expression, we asked how modules are associated

with patients’ clinical attributes and how they are associated across tissues. Pearson correlation

and Analysis of Variance (ANOVA) was used to test association between a given module and

continuous patient attributes (eg. age, weight, MKS, LUMS) and between a given module and

categorical patient attributes (eg. ER, HER2, subtypes, lymph node status), respectively (S1
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Text). For each variable. we computed empirical p-values after permuting clinical labels 1000

times. For each variable, we perform a total of 42 association tests (23 blood modules + 19

tumor modules) and used false discovery rate [65] to correct for multiple testing for each vari-

able independently or for each “family” of tests when dependent variables are very similar (S1

Text).

Interactions between modules across tissues are identified using a random permutation

approach based on the Pearson correlation between ranksums of gene expression in modules

across tissues (S1 Text). ANOVA was used to compare SR module expression between BC

patients (assigned to a given tumor module ROI95 categories) and controls.

Data and software availability

Data resource. Microarray data have been deposited at the European Genome-phenome

Archive [67] (EGA; https://www.ebi.ac.uk/ega/; accession number EGAS00001001804).

Software. The MIxT web application (http://mixt-blood-tumor.bci.mcgill.ca/) is written

in the Go programming language to provide an interface to statistical analyses in R and link to

online databases. Users can browse through all the results generated for this study, visualize

gene co-expression networks and expression heatmaps, and search for genes, gene lists, and

pathways. We use Bootstrap (http://getbootstrap.com) to build the user interface and Java-

script libraries D3 (http://d3js.org) and Sigma (http://sigmajs.org) to build interactive visuali-

zations. The web application framework is open sourced at http://github.com/fjukstad/mixt.

Supporting information

S1 Table. Enrichment of clinicopathological and tumor subtypes attributes across subtyp-

ing schemes. The table shows statistically significant associations between tumor attributes

(columns) and subtypes (rows). For columns representing binary variables (ER, HER2, LN, as

well as subtype/cohorts), the table shows the number of patients and the level of significance

computed using Fisher’s exact test (FET). Enrichment is indicated using “+” symbols, while

for depletion “-” symbols are used. The number of symbols in each entry correspond to signifi-

cance levels of 0.05, 0.01, 0.001, and< 0.0001. For example, the entry in row “her2E” and col-

umn “HER2+” contains the symbol “++++” indicating that herE patients are more likely to be

HER2+ than non-her2E patients. In contrast, the entry in row “her2E” and column “ER+”

contains the symbol “—” indicating that her2E patients are less likely to be ER+ than non-

her2E patients. Grey indicates cases where enrichment cannot be calculated.

(XLSX)

S2 Table. Top GO terms enriched in tumor modules. Top 5 GO terms that overlap with each

module. “Annotated” indicates the number of genes in the GO term, “Significant” indicates

the number of overlapping genes. “Expected” indicates the number of genes that we would

expect by chance to be overlapping with the GO term. “classicFisher” presents the p-value

from a classic fisher exact test and “weight01Fisher” presents the p-value from the weight01

algorithm and fisher exact test from [44].

(XLSX)

S3 Table. Top 5 enrichments among each of the following signature sets. i) c1, c2.cgp, c2.

cp, c6, c7 and h gene set collections from MSigDB signatures (v5.1) [66]. ii) peripheral-blood

mononuclear cell (PBMC) transcriptional modules (sig.set = i) from [52]. iii) our blood-based

gene expression signatures (341- and 50-gene; sig.set = d) for BC [33] iv) immune-specific

gene sets (sig.set = iris) from [46]. Enrichment for each gene signature was estimated for all

genes in the modules and for genes that are positively (red genes up) or negatively (blue genes

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 20 / 27

https://www.ebi.ac.uk/ega/
http://mixt-blood-tumor.bci.mcgill.ca/
http://golang.org/
http://getbootstrap.com/
http://d3js.org/
http://sigmajs.org/
http://github.com/fjukstad/mixt
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005680.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005680.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005680.s003
https://doi.org/10.1371/journal.pcbi.1005680


dn) correlated with the patient ranksum only using the hypergeometric minimum-likelihood

p-values, computed with the function ‘dhyper’ (equivalent to one-sided Fisher exact test). P-

values were then adjusted for multiple testing using false discovery rate [65].

(XLSX)

S4 Table. Top GO terms enriched in SR modules. Legend follows S2 Table.

(XLSX)

S5 Table. Top 5 gene sets of each signature set enriched in SR modules. Legend follows S3

Table.

(XLSX)

S1 Fig. Gene expression and clinical data processing. (A) Preprocessing of the microarray

data was performed identically in each of the five datasets: blood (bl) 1–4 and tumor (t. 1) data-

sets. Steps that trim samples and probes/genes are presented horizontally and vertically,

respectively. In total, we investigated blood and tumor profiles from 173 BC patients and

blood profiles from 282 controls. Profiles include 16,782 unique genes. (B) Imputation of miss-

ing ER status based on expression of ESR1 gene. Receiver operating characteristic (ROC) curve

setting on the right using IHC/FISH assignment as true label. False positive rate threshold was

set to< 0.2 with regard to the true label. (C) Imputation of missing HER2 status based on

expression of genes included in the HER2 amplicon (ERBB2,GRB7, PGAP3, PNMT,MIEN1,

TCAP).

(TIF)

S2 Fig. Significant univariate gene markers of subtypes in SR (false discovery rate, fdr�

0.2). Blue and red shade correspond to under- and over- expression of the marker in a given

subtype vs the others, respectively. Shading is proportional to the level of significance of the

gene marker.

(TIF)

S3 Fig. Gene expression heatmap of the 70 blood markers of lumC tumors. Rows corre-

spond to genes and columns correspond to samples. Gene expression are scaled by row.

Patients are linearly ordered based on their ranksum of gene expression. Genes are ordered by

their correlation to the observed patient ordering. Genes that are positively and negatively cor-

related with the patient ranksum are represented in the right sidebar colored in red and blue,

respectively. Yellow vertical lines delimit the Region Of Independence (ROI95) that contains

95% of the randomly generated samples. A green tick in ‘lumC’ refers to a patient with a lumi-

nal C tumor according to the CIT scheme [8].

(TIF)

S4 Fig. Gene co-expression networks in each tissue. (A) Heatmap of the topological overlap

between genes expressed in tumors. Each row and column represent a gene, light color indi-

cates low topological overlap and progressively darker red indicates higher topological overlap.

Module assignment is displayed along the left and the top of the heatmap. (B) Heatmap of the

topological overlap between genes expressed in SR. The legend follows S4A Fig.

(TIF)

S5 Fig. Expression patterns of the green tumor module. (A) Expression heatmap of genes in

the green tumor module. Legend follows S3 Fig. Color coding for ER, HER2, pam50, hybrid,

cit, claudin-low and lymph follows Fig 1D. In general, a tick for a binary clinical variable refers

to a positive value (eg. a red tick in ‘basalL’ refers to patients with basalL tumors). For continu-

ous variables such as Mitosis Kinase Score (MKS), Luminal Score (LUMS), HER2 score
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(HER2S), age, and weight, dark and light shades represent high and low values, respectively.

Asterisks represent the level of significance of the associations between the gene ranksums for

the green tumor module and clinicopathological attributes of patients. Associations were esti-

mated using ANOVA or Pearson correlation for categorical and continuous variable, respec-

tively (p-value < �0.05, ��0.01, ���0.001). (B) Distribution of ranksums for the green tumor

module according to pam50 subtypes. aov: analysis of variance.

(TIF)

S6 Fig. SR modules associated with clinico-pathological variable. (A) One (saddlebrown)

modules in the patient SR is associated with HER2+ BC. (B) Three modules in the patient SR

are associated with lumC BC. (C) One module in the patient SR are associated to both lumC

and large (>2cm) tumors. (D) Three modules in the patient SR are associated with large

(>2cm) tumors. The legend for expression heatmaps (left) follows S3 Fig. Boxplots (right)

compare module expression in SR from patients with lumC, HER2+, or large tumors with

other BC patients, and controls. aov: analysis of variance.

(TIF)

S7 Fig. Background distributions of the correlations coefficients between ranksums of

gene expression in modules across tissues within each subtype. The dotted lines represent

the lower and higher bounds that were used to call significant associations between modules

across tissues. Curves are colored according to the families of subtypes as listed in Fig 4.

(TIF)

S8 Fig. Associations between the darkgrey tumor module and distinct SR by subtypes. (A)

Scatter plot of ranksums of the darkgrey tumor module and the lightyellow SR module in CIT

lumA patients. The top corner depicts the background distributions of the correlations coeffi-

cients between ranksums of every modules pairs across tissues in CIT lumA patients. (B) Scat-

ter plot of ranksums of the darkgrey tumor module and the salmon SR module in ER+HER2

+ patients. Legend follows S8A Fig (C) Expression heatmap of genes in the darkgrey tumor

module in luminal A patients under the CIT scheme [8]. Patients are linearly ordered based on

the ranksum of gene expression of the darkgrey tumor module. Yellow vertical lines delimit

the ROI95 in tumor that contains 95% of the randomly generated samples. Genes that are posi-

tively and negatively correlated with the patient ranksum are represented in the right sidebar

colored in red and blue, respectively. Top enrichment keywords are indicated on the left of the

heatmap (S2 and S3 Tables). (D) Expression heatmap of genes in the darkgrey tumor module

in ER+/HER2+ patients. Legend follows S8C Fig. (E) Expression heatmap of genes in the light-

yellow SR module luminal A patients under the CIT scheme [8]. Legend follows S8C Fig. Top

enrichment keywords are indicated on the left of the heatmap (S4 and S5 Tables). (F) Expres-

sion heatmap of genes in the salmon SR module in ER+/HER2+ patients. Legend follows S8C

Fig. Top enrichment keywords are indicated on the left of the heatmap (S4 and S5 Tables). (G)

Clinical characteristics of luminal A patients under the CIT scheme [8] ordered by gene rank-

sums derived from the darkgrey tumor module. Legend follows Fig 1D. Asterisks represent the

level of significance of the associations between the gene ranksums for the darkgrey tumor

module and clinicopathological attributes of patients. Associations were estimated using

ANOVA (fdr< �0.1, ��0.05, ���0.01). (H) Clinical characteristics of ER+/HER2+ patients

ordered by gene ranksums derived from the darkgrey tumor module. Legend follows S8G

Fig. (I) Distribution of ranksums for luminal A patients under the CIT scheme [8] and controls

induced by the expression of genes in the lightyellow SR module. Patients are grouped accord-

ing to the ROI95 darkgrey tumor module category as defined in S8C Fig. aov: analysis of vari-

ance (H) Distribution of ranksums for ER+HER2+ patients and controls induced by the
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expression of genes in the salmon SR module. Patients are grouped according to the ROI95

darkgrey tumor module category as defined in S8D Fig.

(TIF)

S1 Text. Supporting methods.

(PDF)
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